Challenger App

No.1 PSC Learning App

1M+ Downloads
Let f be a function from Z to Z. such that f(x) = x + 3 Find the inverse of f?

Ax -3

Bx + 3

Cx - 6

Dx - 9

Answer:

A. x -3

Read Explanation:

Understanding Inverse Functions

  • An inverse function, denoted as f⁻¹(x), "undoes" the operation of the original function f(x). If f(a) = b, then f⁻¹(b) = a.

  • For a function to have an inverse, it must be bijective. This means the function must be both:

    • One-to-one (Injective): Each distinct element in the domain maps to a distinct element in the codomain. No two different inputs produce the same output.

    • Onto (Surjective): Every element in the codomain is mapped to by at least one element in the domain. The range of the function is equal to its codomain.

  • For the given function f(x) = x + 3, where f: Z → Z (from integers to integers):

    • It is one-to-one because if x₁ + 3 = x₂ + 3, then x₁ = x₂.

    • It is onto because for any integer y in the codomain, we can find an integer x = y - 3 in the domain such that f(x) = (y - 3) + 3 = y.

    • Since it is both one-to-one and onto, an inverse function exists.

Steps to Find the Inverse of a Function

  1. Replace f(x) with y: Start by writing the function as y = f(x). For f(x) = x + 3, this becomes y = x + 3.

  2. Swap x and y: Interchange the variables x and y in the equation. This represents the reflection of the function across the line y = x, which is the geometrical interpretation of an inverse. So, x = y + 3.

  3. Solve for y: Isolate y in the new equation. This will give you the expression for the inverse function. From x = y + 3, subtract 3 from both sides to get y = x - 3.

  4. Replace y with f⁻¹(x): The expression you found for y is the inverse function. So, f⁻¹(x) = x - 3.


Related Questions:

A={1,2,3, {1}, {1,2}} എന്ന ഗണത്തിൽ തെറ്റായ പ്രസ്താവന ഏത്?
30 മീറ്റർ നീളവും 20 മീറ്റർ വീതിയും ഉള്ള ഒരു തോട്ടത്തിൽ ചുറ്റും പുറത്തായി രണ്ട് മീറ്റർ വീതിയിൽ ഒരു പാതയുണ്ട്. പാതയുടെ പരപ്പളവ് എത്ര ?

(x2)(3x)\sqrt{(x-2)(3-x)} എന്ന ഏകദത്തിന്റെ മണ്ഡലം ഏത് ?

ചുവടെ കൊടുത്തിരിക്കുന്ന ബന്ധങ്ങളിൽ ഏകദങ്ങൾ ഏതൊക്കെയാണ്?

  1. {(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)}
  2. {(2,4),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)}
  3. {(1,3),(1,5),(2,5)}
    tan 2x+tan x + tan 2x tanx = 1 എന്ന സമവാക്യത്തിന്റെ പൊതുപരിഹാരം ഏത് ?