Challenger App

No.1 PSC Learning App

1M+ Downloads

r(t)=tan1ti+sintj+t2k\overset{\rightarrow}{r(t)}=tan^{-1}ti+sintj+t^2k ആയാൽ r(t)t=0=\overset{\rightarrow}{r'(t)}_{t=0}=

Ai-j

B1/2i+j+k

Ci+j-k

Di+j

Answer:

D. i+j

Read Explanation:

r(t)=11+t2i+costj+2tk\overset{\rightarrow}{r'(t)}=\frac{1}{1+t^2}i+costj +2tk

r(t)t=0=11+0i+cos0+2×0k\overset{\rightarrow}{r'(t)}_{t=0}=\frac{1}{1+0}i+cos0+2 \times 0k

=i+j=i+j


Related Questions:

a=5,b=6,a.b=25|\overset{\rightarrow}{a}=5|, |\overset{\rightarrow}{b}|=6, \overset{\rightarrow}{a}.\overset{\rightarrow}{b}=-25 ആയാൽ a×b=|\overset{\rightarrow}{a} \times \overset{\rightarrow}{b}|=

solve 4y"-25y' = 0

a=βi+2j+2k,b=2i+2j+βk\overset{\rightarrow}{a}=\beta i+2j +2k , \overset{\rightarrow}{b} = 2i + 2j + \beta k എന്നീ സദിശങ്ങൾ ലംബങ്ങളായാൽ a+bab=|\overset{\rightarrow}{a}+\overset{\rightarrow}{b}|-|\overset{\rightarrow}{a}-\overset{\rightarrow}{b}|=

In the figure, BC is a chord and PA is a tangent to the circle. PB = 4 cm, PA = 6 cm the length of the chord BC is :

image.png

y2=2c(x+c)y^2=2c(x+ \sqrt c) എന്ന വക്രത്തിന്ടെ അവകലജ സമവാക്യത്തിൻടെ ക്രമം , കൃതി ഏത് ?