A-1B0C1D2Answer: B. 0 Read Explanation: [1243−1/5−132−1/5]−1+[13−1−14−1]−1[\frac{1}{{243}^{-1/5}}-\frac{1}{32^{-1/5}}]^{-1}+[\frac{1}{{3^{-1}}}-\frac{1}{4^{-1}}]^{-1}[243−1/51−32−1/51]−1+[3−11−4−11]−1=[1(35)−1/5−1(25)−1/5]−1+[13−1−14−1]−1=[\frac{1}{{(3^5})^{-1/5}}-\frac{1}{(2^5)^{-1/5}}]^{-1}+[\frac{1}{{3^{-1}}}-\frac{1}{4^{-1}}]^{-1}=[(35)−1/51−(25)−1/51]−1+[3−11−4−11]−1=[13−1−12−1]−1+[13−1−14−1]−1=[\frac{1}{{3^{-1}}}-\frac{1}{2^{-1}}]^{-1}+[\frac{1}{{3^{-1}}}-\frac{1}{4^{-1}}]^{-1}=[3−11−2−11]−1+[3−11−4−11]−1=[3−2]−1+[3−4]−1=[3-2]^{-1}+[3-4]^{-1}=[3−2]−1+[3−4]−1=1/1+1/(−1)=1/1 + 1/(-1)=1/1+1/(−1)=1−1=1-1=1−1=0=0=0 Read more in App