solve 4y"-25y' = 0AC1−C2e254xC_1-C_2e^{\frac{25}{4}x}C1−C2e425xBC1+C2e254xC_1+C_2e^{\frac{25}{4}x}C1+C2e425xCC2e254xC_2e^{\frac{25}{4}x}C2e425xDC1+C2e425xC_1+C_2e^{\frac{4}{25}x}C1+C2e254xAnswer: C1+C2e254xC_1+C_2e^{\frac{25}{4}x}C1+C2e425x Read Explanation: 4y"-25y' = 0 A.E => 4m² - 25m = 0m(4m-25m)=0m=0 ; 4m = 25m=25/4y=C1em1x+C2em2xy= C_1 e^{m_1x}+C_2e^{m_2x}y=C1em1x+C2em2x=C1e0x+C2e254x=C_1e^{0x}+C_2e^{\frac{25}{4}x}=C1e0x+C2e425x=C1+C2e254x=C_1+C_2e^{\frac{25}{4}x}=C1+C2e425x Read more in App