App Logo

No.1 PSC Learning App

1M+ Downloads

If 4(xy)=644^{(x -y) }= 64 and 4(x+y)=10244^{(x + y) }= 1024, then find the value of x.

A1

B2

C3

D4

Answer:

D. 4

Read Explanation:

Convert Numbers to a Common Base

  • The given equations are $4^{(x - y)} = 64$ and $4^{(x + y)} = 1024$.

  • The first crucial step is to express the numbers on the right-hand side (64 and 1024) as powers of the base 4.

  • We know that $64 = 4 \times 4 \times 4 = 4^3$.

  • Similarly, $1024 = 4 \times 4 \times 4 \times 4 \times 4 = 4^5$.

Equate the Exponents

  • Now, substitute these values back into the original equations:

    • Equation 1 becomes: $4^{(x - y)} = 4^3$

    • Equation 2 becomes: $4^{(x + y)} = 4^5$

  • According to the law of exponents, if $a^m = a^n$ (where $a \ne 0, 1, -1$), then $m = n$.

  • Applying this rule, we can equate the exponents:

    • New Equation 3: $x - y = 3$

    • New Equation 4: $x + y = 5$

Solve the System of Linear Equations

  • We now have a simple system of two linear equations with two variables (x and y).

  • To find 'x', the easiest method is elimination. Add Equation 3 and Equation 4:

    • $(x - y) + (x + y) = 3 + 5$

    • $x - y + x + y = 8$

    • $2x = 8$

  • Finally, solve for 'x': $x = \frac{8}{2} = 4$.


Related Questions:

212=44121^2=441 ആയാൽ 4.41\sqrt4.41ൻ്റ വില എന്ത്

5555 എന്ന സംഖ്യയുടെ വർഗ്ഗത്തിലെ ഒറ്റയുടെ സ്ഥാനത്തെ സംഖ്യ ഏത്?
625686734489 ൻ്റെ വർഗ്ഗമൂലത്തിൽ എത്ര സംഖ്യകൾ ഉണ്ടായിരിക്കും
Simplified form of √72 + √162 + √128 =
√1.44 =