Challenger App

No.1 PSC Learning App

1M+ Downloads

If (x5/4)x=(xx)5/4(x^{5/4})^x=(x^x)^{5/4} find x

A5/4

B25/16

C625/256

D4/5

Answer:

C. 625/256

Read Explanation:

(x5/4)x=(xx5/4)(x^{5/4})^x=(x^{x^{5/4}})

(x5/4×x)=(xx5/4)(x^{5/4\times{x}})=(x^{x^{5/4}})

x5x/4=(xx5/4)x^{5x/4}=(x^{x^{5/4}})

5x/4=x5/45x/4=x^{5/4}

5x/4=x1+1/45x/4=x^{1+1/4}

5x/4=x1×x1/45x/4=x^1\times{x^{1/4}}

5/4=x1/45/4=x^{1/4}

x=(5/4)4x=(5/4)^4

x=625/256x=625/256


Related Questions:

(150)2(50)2=?(150) ^ 2 - (50) ^ 2=?

image.png

24+21696=?\frac{\sqrt{24}+\sqrt{216}}{\sqrt{96}}=?

√0.0064 =