If (x5/4)x=(xx)5/4(x^{5/4})^x=(x^x)^{5/4}(x5/4)x=(xx)5/4 find x A5/4B25/16C625/256D4/5Answer: C. 625/256 Read Explanation: (x5/4)x=(xx5/4)(x^{5/4})^x=(x^{x^{5/4}})(x5/4)x=(xx5/4)(x5/4×x)=(xx5/4)(x^{5/4\times{x}})=(x^{x^{5/4}})(x5/4×x)=(xx5/4)x5x/4=(xx5/4)x^{5x/4}=(x^{x^{5/4}})x5x/4=(xx5/4)5x/4=x5/45x/4=x^{5/4}5x/4=x5/45x/4=x1+1/45x/4=x^{1+1/4}5x/4=x1+1/45x/4=x1×x1/45x/4=x^1\times{x^{1/4}}5x/4=x1×x1/45/4=x1/45/4=x^{1/4}5/4=x1/4x=(5/4)4x=(5/4)^4x=(5/4)4x=625/256x=625/256x=625/256 Read more in App