a→=βi+2j+2k,b→=2i+2j+βk\overset{\rightarrow}{a}=\beta i+2j +2k , \overset{\rightarrow}{b} = 2i + 2j + \beta k a→=βi+2j+2k,b→=2i+2j+βk എന്നീ സദിശങ്ങൾ ലംബങ്ങളായാൽ ∣a→+b→∣−∣a→−b→∣=|\overset{\rightarrow}{a}+\overset{\rightarrow}{b}|-|\overset{\rightarrow}{a}-\overset{\rightarrow}{b}|=∣a→+b→∣−∣a→−b→∣= A2B1C0D-1Answer: C. 0 Read Explanation: \overset{\rightarrow}{a} , \overset{\rightarrow}{b} ലംബങ്ങളായാൽ a→.b→=0\overset{\rightarrow}{a}.\overset{\rightarrow}{b}=0a→.b→=02β+4+2β=02\beta + 4 + 2\beta = 02β+4+2β=04β=−44\beta = -44β=−4β=−1\beta=-1β=−1a→=−i+2j+2k;b→=2i+2j−k\overset{\rightarrow}{a}=-i+2j+2k ; \overset{\rightarrow}{b}=2i+2j-ka→=−i+2j+2k;b→=2i+2j−ka→+b→=i+4j+k\overset{\rightarrow}{a}+\overset{\rightarrow}{b}=i+4j+ka→+b→=i+4j+ka→−b→=−3i+0j+3k\overset{\rightarrow}{a}-\overset{\rightarrow}{b}=-3i+0j+3ka→−b→=−3i+0j+3k∣a→+b→∣−∣a→−b→∣=1+16+1−9+9|\overset{\rightarrow}{a}+\overset{\rightarrow}{b}|-|\overset{\rightarrow}{a}-\overset{\rightarrow}{b}|= \sqrt{1+16+1}-\sqrt{9+9}∣a→+b→∣−∣a→−b→∣=1+16+1−9+9=0=0=0 Read more in App