App Logo

No.1 PSC Learning App

1M+ Downloads

The roots of the equation 2(a2+b2)×x2+2(a+b)×x+1=02 (a ^ 2 + b ^ 2) \times x ^ 2 + 2(a + b) \times x + 1 = 0 are

AReal and equal

BReal and irrational

CImaginary

DNone of the above

Answer:

C. Imaginary

Read Explanation:

Understanding the Nature of Roots of a Quadratic Equation

  • The given equation is in the standard quadratic form: Ax² + Bx + C = 0.
  • To determine the nature of the roots of a quadratic equation, we calculate its discriminant, denoted by Δ (delta) or D.
  • The formula for the discriminant is Δ = B² - 4AC.

Interpreting the Discriminant

  • If Δ > 0: The roots are real and distinct (unequal).
  • If Δ = 0: The roots are real and equal.
  • If Δ < 0: The roots are imaginary (complex conjugates).

Applying to the Given Equation

  1. First, identify the coefficients A, B, and C from the given equation: 2 (a² + b²) x² + 2(a + b) x + 1 = 0.
    • A = 2(a² + b²)
    • B = 2(a + b)
    • C = 1
  2. Next, substitute these values into the discriminant formula:Δ = B² - 4ACΔ = (2(a + b))² - 4 × [2(a² + b²)] × 1
  3. Simplify the expression:Δ = 4(a + b)² - 8(a² + b²)Δ = 4(a² + 2ab + b²) - 8a² - 8b²Δ = 4a² + 8ab + 4b² - 8a² - 8b²Δ = -4a² + 8ab - 4b²
  4. Factor out -4:Δ = -4(a² - 2ab + b²)
  5. Recognize the perfect square trinomial:Δ = -4(a - b)²

Conclusion on the Nature of Roots

  • For any real numbers 'a' and 'b', the term (a - b)² is always greater than or equal to zero ((a - b)² ≥ 0).
  • Therefore, -4(a - b)² will always be less than or equal to zero (Δ ≤ 0).
  • This implies two possibilities for the roots:
    • If a = b, then (a - b)² = 0, which makes Δ = 0. In this specific case, the roots would be real and equal.
    • If a ≠ b, then (a - b)² > 0, which makes Δ < 0 (a negative value). In this general case, the roots are imaginary.
  • Since 'Imaginary' is provided as the correct answer, it implies that the question considers the general scenario where a ≠ b, leading to a strictly negative discriminant.

Key Points for Competitive Exams

  • Always be prepared to calculate the discriminant for various types of quadratic equations.
  • Remember the three conditions (Δ > 0, Δ = 0, Δ < 0) and their corresponding root natures.
  • Pay close attention to algebraic manipulations, especially factoring perfect squares, as they simplify complex discriminant expressions.
  • In multiple-choice questions, if a general answer like 'Imaginary' is given, it usually refers to the most common or general case where parameters are not equal, leading to that specific nature of roots.

Related Questions:

താഴെ തന്നിട്ടുള്ളവയിൽ ശൂന്യ ഗണം?

  1. 3നും 10നും ഇടയിലുള്ള ഇരട്ട അഭാജ്യ സംഖ്യകളുടെ ഗണം
  2. ഒറ്റ സംഖ്യകളുടെ ഗണം
  3. ഇരട്ട സംഖ്യകളുടെ ഗണം
  4. 3നും 10നും ഇടയിലുള്ള ഒറ്റ ആഭാജ്യ സംഖ്യകളുടെ ഗണം
    Write the set {1/2, 2/3, 3/4 4/5, 5/6, 6/7} in set builder form
    {2,3} യുടെ നിബന്ധന രീതി :
    (1+i) എന്നത് x²-2x+2 എന്ന ദിമാന സമവാക്യത്തിൻടെ ഒരു റൂട്ട് ആണ് , എങ്കിൽ രണ്ടാമത്തെ റൂട്ട് ഏത് ?
    D = {3, 4, 6} , E= {2, 3, 4}, C= {1,2} ആയാൽ (D ∪ E) - C ?