App Logo

No.1 PSC Learning App

1M+ Downloads

The roots of the equation 2(a2+b2)×x2+2(a+b)×x+1=02 (a ^ 2 + b ^ 2) \times x ^ 2 + 2(a + b) \times x + 1 = 0 are

AReal and equal

BReal and irrational

CImaginary

DNone of the above

Answer:

C. Imaginary

Read Explanation:

Understanding the Nature of Roots of a Quadratic Equation

  • The given equation is in the standard quadratic form: Ax² + Bx + C = 0.
  • To determine the nature of the roots of a quadratic equation, we calculate its discriminant, denoted by Δ (delta) or D.
  • The formula for the discriminant is Δ = B² - 4AC.

Interpreting the Discriminant

  • If Δ > 0: The roots are real and distinct (unequal).
  • If Δ = 0: The roots are real and equal.
  • If Δ < 0: The roots are imaginary (complex conjugates).

Applying to the Given Equation

  1. First, identify the coefficients A, B, and C from the given equation: 2 (a² + b²) x² + 2(a + b) x + 1 = 0.
    • A = 2(a² + b²)
    • B = 2(a + b)
    • C = 1
  2. Next, substitute these values into the discriminant formula:Δ = B² - 4ACΔ = (2(a + b))² - 4 × [2(a² + b²)] × 1
  3. Simplify the expression:Δ = 4(a + b)² - 8(a² + b²)Δ = 4(a² + 2ab + b²) - 8a² - 8b²Δ = 4a² + 8ab + 4b² - 8a² - 8b²Δ = -4a² + 8ab - 4b²
  4. Factor out -4:Δ = -4(a² - 2ab + b²)
  5. Recognize the perfect square trinomial:Δ = -4(a - b)²

Conclusion on the Nature of Roots

  • For any real numbers 'a' and 'b', the term (a - b)² is always greater than or equal to zero ((a - b)² ≥ 0).
  • Therefore, -4(a - b)² will always be less than or equal to zero (Δ ≤ 0).
  • This implies two possibilities for the roots:
    • If a = b, then (a - b)² = 0, which makes Δ = 0. In this specific case, the roots would be real and equal.
    • If a ≠ b, then (a - b)² > 0, which makes Δ < 0 (a negative value). In this general case, the roots are imaginary.
  • Since 'Imaginary' is provided as the correct answer, it implies that the question considers the general scenario where a ≠ b, leading to a strictly negative discriminant.

Key Points for Competitive Exams

  • Always be prepared to calculate the discriminant for various types of quadratic equations.
  • Remember the three conditions (Δ > 0, Δ = 0, Δ < 0) and their corresponding root natures.
  • Pay close attention to algebraic manipulations, especially factoring perfect squares, as they simplify complex discriminant expressions.
  • In multiple-choice questions, if a general answer like 'Imaginary' is given, it usually refers to the most common or general case where parameters are not equal, leading to that specific nature of roots.

Related Questions:

ചുവടെ കൊടുത്തിരിക്കുന്നവായിൽ ഏതൊക്കെയാണ് ശൂന്യ ഗണങ്ങൾ അല്ലാത്തത്
840 പേർ ഉള്ള ഒരു പട്ടണത്തിൽ 450 പേർ ഹിന്ദി പത്രവും , 300 പേർ ഇംഗ്ലീഷ് പത്രവും 200 പേർ രണ്ടും വായിക്കുന്നു .അപ്പോൾ രണ്ടും വായിക്കാത്തവരുടെ എണ്ണം ?
60 കുട്ടികളുള്ള ക്ലാസ്സിൽ 40 പേർ NCC യും 30 പേർ NSS-ഉം തിരഞ്ഞെടുത്തു. അപ്പോൾ NCC യോ NSS ഓ തിരഞ്ഞെടുക്കാത്ത വിദ്യാർത്ഥികളുടെ എണ്ണം ?
A = {x:x² - 5x +6 =0} , B= {2, 4}, C={4,5} എങ്കിൽ A x (B∩C) ?
A= {1,2} ൽ നിന്നും B = {3,4} ലേക്കുള്ള ബന്ധങ്ങളുടെ ആകെ എണ്ണം എത്ര ?