Challenger App

No.1 PSC Learning App

1M+ Downloads

The roots of the equation 2(a2+b2)×x2+2(a+b)×x+1=02 (a ^ 2 + b ^ 2) \times x ^ 2 + 2(a + b) \times x + 1 = 0 are

AReal and equal

BReal and irrational

CImaginary

DNone of the above

Answer:

C. Imaginary

Read Explanation:

Understanding the Nature of Roots of a Quadratic Equation

  • The given equation is in the standard quadratic form: Ax² + Bx + C = 0.
  • To determine the nature of the roots of a quadratic equation, we calculate its discriminant, denoted by Δ (delta) or D.
  • The formula for the discriminant is Δ = B² - 4AC.

Interpreting the Discriminant

  • If Δ > 0: The roots are real and distinct (unequal).
  • If Δ = 0: The roots are real and equal.
  • If Δ < 0: The roots are imaginary (complex conjugates).

Applying to the Given Equation

  1. First, identify the coefficients A, B, and C from the given equation: 2 (a² + b²) x² + 2(a + b) x + 1 = 0.
    • A = 2(a² + b²)
    • B = 2(a + b)
    • C = 1
  2. Next, substitute these values into the discriminant formula:Δ = B² - 4ACΔ = (2(a + b))² - 4 × [2(a² + b²)] × 1
  3. Simplify the expression:Δ = 4(a + b)² - 8(a² + b²)Δ = 4(a² + 2ab + b²) - 8a² - 8b²Δ = 4a² + 8ab + 4b² - 8a² - 8b²Δ = -4a² + 8ab - 4b²
  4. Factor out -4:Δ = -4(a² - 2ab + b²)
  5. Recognize the perfect square trinomial:Δ = -4(a - b)²

Conclusion on the Nature of Roots

  • For any real numbers 'a' and 'b', the term (a - b)² is always greater than or equal to zero ((a - b)² ≥ 0).
  • Therefore, -4(a - b)² will always be less than or equal to zero (Δ ≤ 0).
  • This implies two possibilities for the roots:
    • If a = b, then (a - b)² = 0, which makes Δ = 0. In this specific case, the roots would be real and equal.
    • If a ≠ b, then (a - b)² > 0, which makes Δ < 0 (a negative value). In this general case, the roots are imaginary.
  • Since 'Imaginary' is provided as the correct answer, it implies that the question considers the general scenario where a ≠ b, leading to a strictly negative discriminant.

Key Points for Competitive Exams

  • Always be prepared to calculate the discriminant for various types of quadratic equations.
  • Remember the three conditions (Δ > 0, Δ = 0, Δ < 0) and their corresponding root natures.
  • Pay close attention to algebraic manipulations, especially factoring perfect squares, as they simplify complex discriminant expressions.
  • In multiple-choice questions, if a general answer like 'Imaginary' is given, it usually refers to the most common or general case where parameters are not equal, leading to that specific nature of roots.

Related Questions:

ഒരു ഗണത്തിലെ അംഗങ്ങളുടെ എണ്ണം 3 ആയാൽ, ആ ഗണത്തിന് എത്ര സബ്സെറ്റുകൾ ഉണ്ടായിരിക്കും?
x=2 എന്നത് y=4x²-14x+12 എന്ന ധ്വിമാന സമവാക്യത്തിന്റെ ഒരു റൂട്ടാണ് എങ്കിൽ y=

ചുവടെ കൊടുത്തിരിക്കുന്നവയിൽ ഏതൊക്കെയാണ് ശൂന്യ ഗണങ്ങൾ ?

  1. 2 കൊണ്ട് നിശേഷം ഹരിക്കാവുന്ന ഒറ്റ സംഖ്യകളുടെ ഗണം
  2. ഇരട്ട ആഭാജ്യ സംഖ്യകളുടെ ഗണം
  3. {x: x ഒരു എണ്ണൽ സംഖ്യ,. x < 5, x> 7}
  4. {y: യിൽ രണ്ടു സമാന്തര വരാകൾക്ക് പൊതുവായ ബിന്ദു }
    A = { 1, 2, 3, 4, 5, 6}, B = { 2, 4, 6, 8 }. A –B എത്ര ?
    sin 3x=0 എന്ന സമീകരണത്തിന്റെ നിർദാരണ മൂല്യം ഏത് ?