App Logo

No.1 PSC Learning App

1M+ Downloads

As shown in the given figure, inside the large semicircle, two semicircles (with equal radii) are drawn so that their diameters all sit on the large semicircle's diameter. What is the ratio between the red and blue areas?

image.png

A2 : 3

B2 : 1

C1 : 2

D1 : 1

Answer:

D. 1 : 1

Read Explanation:

Solution:

Concept used:

Area of semicircle = πr2/2

Here,

r = radius of the circle

Calculation:

Let the radius of the bigger large semicircle be R

So, the diameter of the two small semicircles = R

Now,

Diameter the bigger large semicircle = 2R

So, the area of the larger semicircle = πR2/2

Again,

Total area of two small semicircle = 2 × {π(R/2)2/2}

⇒ πR2/4 i.e red area

So, the area of the blue area = area of the larger semicircle - area of the two small semicircles

The area of the blue area = πR2/2 - πR2/4

⇒ πR2/4

So, ratio = πR2/4 : πR2/4 = 1 : 1

∴ The ratio between the red and blue areas is 1 : 1


Related Questions:

40 മീറ്റർ നീളവും 30 മീറ്റർ വീതിയുമുള്ള ഒരു കുളത്തിന്റെ ചുറ്റളവ് എത്ര ?
ഒരു വൃത്തത്തിൽ അന്തർലേഖനം ചെയ്ത സമചതുരത്തിന്റെ ഒരു വശം 2cm ആയാൽ വൃത്തത്തിന്റെ പരപ്പളവ്?

One side of a rhombus is 13 cm and one of its diagonals is 24 cm. What is the area (in cm2) of rhombus ?

ഒരു നിശ്ചിത പരിധികൊണ്ട് പരമാവധി വിസ്തീർണ്ണം കിട്ടുന്ന ദ്വിമാന രൂപം?
The area of the parallelogram whose length is 30 cm, width is 20 cm and one diagonal is 40cm is