App Logo

No.1 PSC Learning App

1M+ Downloads

[5          2+i        3i2i    3         1i3i         1+i             0]\begin{bmatrix} 5 \ \ \ \ \ \ \ \ \ \ 2+i \ \ \ \ \ \ \ \ -3i\\ 2-i\ \ \ \ -3 \ \ \ \ \ \ \ \ \ 1-i\\ 3i \ \ \ \ \ \ \ \ \ 1+i \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \end{bmatrix} ഏത് തരം മാട്രിക്സ് ആണ് ?

Aഹെർമിഷ്യൻ മാട്രിക്സ്

Bന്യൂന ഹെർമിഷ്യൻ

Cഅനന്യ മാട്രിക്സ്

Dഇവയൊന്നുമല്ല

Answer:

A. ഹെർമിഷ്യൻ മാട്രിക്സ്

Read Explanation:

A=[5          2+i        3i2i    3         1i3i         1+i             0]A=\begin{bmatrix} 5 \ \ \ \ \ \ \ \ \ \ 2+i \ \ \ \ \ \ \ \ -3i\\ 2-i\ \ \ \ -3 \ \ \ \ \ \ \ \ \ 1-i\\ 3i \ \ \ \ \ \ \ \ \ 1+i \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \end{bmatrix}

A༌ = (A̅)'

A̅ = [5          2i        3i2+i    3         1+i3i         1i           0]\begin{bmatrix} 5 \ \ \ \ \ \ \ \ \ \ 2-i \ \ \ \ \ \ \ \ 3i\\ 2+i\ \ \ \ -3 \ \ \ \ \ \ \ \ \ 1+i\\ -3i \ \ \ \ \ \ \ \ \ 1-i \ \ \ \ \ \ \ \ \ \ \ 0 \end{bmatrix}

A༌=(A̅)' = [5          2+i        3i2i    3         1i3i         1+i           0]=A\begin{bmatrix} 5 \ \ \ \ \ \ \ \ \ \ 2+i \ \ \ \ \ \ \ \ -3i\\ 2-i\ \ \ \ -3 \ \ \ \ \ \ \ \ \ 1-i\\ 3i \ \ \ \ \ \ \ \ \ 1+i \ \ \ \ \ \ \ \ \ \ \ 0 \end{bmatrix} = A

A=AA^* = A

തന്നിട്ടുള്ളത് ഒരു ഹെർമിഷ്യൻ മാട്രിക്സ് ആണ്.


Related Questions:

A,B എന്നിവ 2 സമമിത മാട്രിക്സുകളാണ്, n ഒരു അധിസംഖ്യയും ആയാൽ Aⁿ എന്ന മാട്രിക്സ്
മൂലകൾ (0,0), (3,1), (2,4) ആയ ത്രികോണത്തിന്റെ പരപ്പളവ് കാണുക.

A=[   1      21     3   3      5];B=[  2   4 1        0 7        3]A= \begin{bmatrix} \ \ \ 1\ \ \ \ \ \ 2 \\-1\ \ \ \ \ 3\\\ \ \ 3 \ \ \ \ \ \ 5 \end{bmatrix} ; B= \begin{bmatrix} \ \ 2 \ \ \ -4 \\ \ 1\ \ \ \ \ \ \ \ 0 \\ \ 7 \ \ \ \ \ \ \ \ 3\end{bmatrix} ആയാൽ A-2B യുടെ a₂₁ എത്ര?

ക്രമം 2 ആയ ഒരു സമചതുര മാട്രിക്സ് A യിൽ, A(adjA)=[10  00  10]A(adj A) = \begin{bmatrix} 10 \ \ 0 \\ 0 \ \ 10 \end{bmatrix} ആണെങ്കിൽ |A|-യുടെ വിലയെന്ത്?

3x ≡ 4(mod 5)ന് എത്ര incongruent പരിഹാരങ്ങൾ ഉണ്ട്?