App Logo

No.1 PSC Learning App

1M+ Downloads

Find the length of the largest rod that can be placed in a room 16m long, 12m broad and 1023m10 \frac{2}{3} m. high.

A23 m.

B68 m.

C2223m22\frac{2}{3}m

D2213m22\frac{1}{3}m

Answer:

2223m22\frac{2}{3}m

Read Explanation:

Length of the largest rod =l2+b2+h2=\sqrt{l^2+b^2+h^2}

=162+122+(1023)2=\sqrt{16^2+12^2+(10\frac{2}{3})^2}

=162+122+(323)2=\sqrt{16^2+12^2+(\frac{32}{3})^2}

=400+10249=\sqrt{400+\frac{1024}{9}}

=46249=\sqrt{\frac{4624}{9}}

=683=\frac{68}{3}

=2223m=22\frac{2}{3}m


Related Questions:

ഒരു സമചതുര സ്തൂപികയുടെ ചരിവുയരം 15 cm , പാദവക്ക് 12 cm, ആയാൽതൂപികയുടെ ഉയരം എത്ര ?

The diagonal of the cube is 12312\sqrt{3}cm. Find its Volume?

The perimeter of a square is the same as the perimeter of a rectangle. The perimeter of the square is 40 m. If its breadth is two-thirds of its length, then the area (in m²) of the rectangle is:
The perimeter of a rectangular plotis 48 m and area is 108 sq.m. The dimensions of the plot are
ഒരു ബഹുഭുജത്തിന്റെ കോണുകളുടെ അളവുകളുടെ തുക 8100° ആയാൽ അതിന്റെ വശങ്ങളുടെ എണ്ണം എന്ത് ?