App Logo

No.1 PSC Learning App

1M+ Downloads

Find the value of k if x - 1 is a factor of 4x3+3x24x+k4x^3+3x^2-4x+k

A2

B-3

C0

D1

Answer:

B. -3

Read Explanation:

Factor Theorem:

Given polynomial p(x), if p(a)=0 for some number a, then (x - a) is a linear factor of p(x). Likewise if (x-a) is a linear factor of p(x) then p(a) = 0.

So here

p(1)=0p(1) = 0

p(1)=4(13)+3(12)4(1)+k=0p(1) = 4(1^3)+3(1^2)-4(1)+k=0

    4+34+k=0\implies 4 + 3 -4 + k =0

3+k=03 + k =0

k=3k = -3


Related Questions:

Zeros of p(x)=x227p(x) = x^2-27are:

The sum of roots of the equation 5x211x+6=05x^2-11x+6= 0 is:
image.png

p(x)=2x2+3x+7p(x) =2x^2+3x+7,q(x)=6x2+8x9q(x)=6x^2+8x-9Find q(x)-p(x)

image.png