App Logo

No.1 PSC Learning App

1M+ Downloads

Given that 870.27=x87^{0.27} = x, 870.15=y87^{0.15}= y and xz=y6x^z = y^6 , then the value of z is close to:

A5.77

B2.15

C3.16

D3.33

Answer:

D. 3.33

Read Explanation:

Let's solve this problem using the properties of exponents:

  1. Express x and y in terms of 87:

    • x=870.27x = 87^{0.27}

    • y=870.15y = 87^{0.15}

  2. Substitute x and y into the equation x^z = y^6:

    • (870.27)z=(870.15)6(87^{0.27})^z = (87^{0.15})^6

  3. Apply the power of a power rule (am)n=amn(a^m)^n = a^{m*n}:

    • 870.27z=870.15687^{0.27z} = 87^{0.15 * 6}

    • 870.27z=870.987^{0.27z} = 87^{0.9}

  4. Since the bases are the same, equate the exponents:

    • 0.27z = 0.9

  5. Solve for z:

    • z = 0.9 / 0.27

    • z = 90 / 27

    • z = 10 / 3

    • z = 3.333...

Therefore, the value of z is close to 3.33.


Related Questions:

32m+1=273^{2m+1}=27 ആയാൽ m ൻ്റെ വില

(0.2)⁴ നു തുല്യമായത്

Simplify (32)3+(22)2(3^2)^3+ (2^2)^2

163.5×167.3÷164.2=16x16^{3.5}\times16^{7.3}\div16^{4.2}=16^x ആയാൽ x ൻ്റെ വില കണ്ടെത്തുക