App Logo

No.1 PSC Learning App

1M+ Downloads

If 4a+15a=44a+\frac{1}{5a}=4 , then the value of 25a2+116a225a^2+\frac{1}{16a^2} is:

A55/2

B45/4

C45/2

D33/2

Answer:

C. 45/2

Read Explanation:

Solution:

Given:

4a+15a=44a + \frac{1}{5a}=4

Formula used:

(a + b)2 = a2 + b2 + 2ab

Calculation:

Multiply the given equation by 54\frac{5}{4}

54(4a+15a)=54(4)\frac{5}{4}(4a+\frac{1}{5a}) =\frac{5}{4(4)}

5a+14a=55a +\frac{1}{4a} = 5

Squaring both sides, we get

(5a+14a)2=52(5a +\frac{1}{4a}) ^2= 5^2

25a2+116a2+2(5a)(14a)=2525a^2+\frac{1}{16a^2}+2(5a)(\frac{1}{4a})=25

25a2+116a2+52=2525a^2+\frac{1}{16a^2}+\frac{5}{2}=25

25a2+116a2=255225a^2+\frac{1}{16a^2}=25-\frac{5}{2}

25a2+116a2=45225a^2+\frac{1}{16a^2}=\frac{45}{2}

∴ The correct answer is 452\frac{45}{2}


Related Questions:

If a = 355, b = 356, c = 357, then find the value of a3 + b3 + c3 - 3abc.

Find the factors of the expression 3x2 – 5x – 8.

If x479x2+1=0x^4-79x^2+1=0then the value of x+x1x+x^{-1} can be;

If a + b = 11 and ab = 15, then a2+b2a^2 + b^2 is equal to:

If (a+1/a3)2=16(a+1/a-3)^2=16 then find a3+1/a3a^3+1/a^3