App Logo

No.1 PSC Learning App

1M+ Downloads

If a - b = 4 and a3 - b3 = 88, then find the value of a2 - b2.

A868\sqrt{6}

B666\sqrt{6}

C727\sqrt{2}

D$9\sqrt{6}$

Answer:

868\sqrt{6}

Read Explanation:

Given:

a - b = 4 and a3 - b3 = 88

Formula: 

(a3 - b3) = (a - b) (a2 + b2 + ab)

(a3 - b3) = (a - b) [(a - b)2 + 3ab]

(a + b)2 = a2 + b2 + 2ab

(a + b)(a - b) = a2 - b2

Calculation:

According to the formula

88 = 4 ×\times (42 + 3ab)

⇒ 22 = 16 + 3ab

⇒ 3ab = 22 - 16

⇒ ab = 63\frac{6}{3}

⇒ ab = 2

(a - b)2 = a2 + b2 - 2ab

⇒ 42 = a2 + b2 - 2 ×\times 2

⇒ a2 + b2 = 16 + 4 

⇒ a2 + b2 = 20

(a + b)2 = 20 + 2 ×\times 2

⇒ a + b = 24=26\sqrt{24} = 2\sqrt{6}

Then (a + b)(a - b) = 26×42\sqrt{6}\times{4}

868\sqrt{6} 

∴ (a2 - b2) = 868\sqrt{6}


Related Questions:

ഒരു സംഖ്യയെ 4 കൊണ്ടു ഗുണിച്ച് 10 കൂട്ടിയപ്പോൾ 130 കിട്ടി സംഖ്യ ഏതാണ് ?
If a = 355, b = 356, c = 357, then find the value of a3+b3+c33abc=a^3+b^3+c^3-3abc=

If the sum of the squares of the digits of a two-digit number is 13, then what would be the sum of all the possible combinations of the digits?

8a - b²=24, 8b + b² = 56 ആയാൽ a + b എത്ര?