App Logo

No.1 PSC Learning App

1M+ Downloads

If (a + b + c) = 17, and (a2 + b2 + c2) = 101, find the value of (a - b)2 + (b - c)2 + (c - a)2.

A12

B14

C10

D16

Answer:

B. 14

Read Explanation:

Solution:

Given:

(a + b + c) = 17, and (a2 + b2 + c2) = 101

Formula used:

(a + b + c)2 = (a2 + b2 + c2) + 2 (ab + bc +ca)

Calculation:

(a + b + c)2 = (a2 + b+ c2) + 2 (ab + bc +ca)

⇒ 172 = 101 + 2 (ab + bc +ca)

⇒  (ab + bc +ca) = 94

 (a - b)2 + (b - c)2 + (c - a)2.

⇒ 2 (a2 + b2 + c2) - 2 (ab + bc +ca)

⇒  101×22×94=14101\times{2}-2\times{94}=14


Related Questions:

If (a+1/a3)2=36(a+1/a-3)^2=36then find a2+1/a2a^2+1/a^2

If a + b = 11 and ab = 15, then a2+b2a^2 + b^2 is equal to:

3 പെൻസിലിനും 4 പേനയ്ക്കും കൂടി 66 രൂപയാണ്‌ വില. 6 പെൻസിലിനും 3 പേനയ്ക്കുമാണെങ്കിൽ 72 രൂപയും എങ്കിൽ ഒരു പേനയുടെ വില എത്രയാണ് ?
If a certain amount of money is divided among X persons each person receives RS 256 , if two persons were given Rs 352 each and the remaining amount is divided equally among the other people each of them receives less than or equal to Rs 240 . The maximum possible value of X is :
x, y, z എന്നിവ ഏതെങ്കിലും മൂന്ന് സംഖ്യകളായാൽ, x - y - z നു തുല്യമായത്