App Logo

No.1 PSC Learning App

1M+ Downloads

If (a + b + c) = 17, and (a2 + b2 + c2) = 101, find the value of (a - b)2 + (b - c)2 + (c - a)2.

A12

B14

C10

D16

Answer:

B. 14

Read Explanation:

Solution:

Given:

(a + b + c) = 17, and (a2 + b2 + c2) = 101

Formula used:

(a + b + c)2 = (a2 + b2 + c2) + 2 (ab + bc +ca)

Calculation:

(a + b + c)2 = (a2 + b+ c2) + 2 (ab + bc +ca)

⇒ 172 = 101 + 2 (ab + bc +ca)

⇒  (ab + bc +ca) = 94

 (a - b)2 + (b - c)2 + (c - a)2.

⇒ 2 (a2 + b2 + c2) - 2 (ab + bc +ca)

⇒  101×22×94=14101\times{2}-2\times{94}=14


Related Questions:

The square of a term in the arithmetic sequence 2, 5, 8, ..., is 2500, What is its position
x = 100, y = 0.05 ആയാൽ ചുവടെ കൊടുത്തിട്ടുള്ളവയിൽ ഏറ്റവും വലുത് ഏത് ?

If a+1/a=2a + 1/a =2 what is a2024+1a2024=?a^{2024}+\frac{1}{a^{2024}}=?

If x2+1/x2=98x ^ 2 + 1 / x ^ 2 = 98 find the value of x+1/xx + 1 / x

If a + b = 11 and ab = 15, then a2+b2a^2 + b^2 is equal to: