If (a + b + c) = 17, and (a2 + b2 + c2) = 101, find the value of (a - b)2 + (b - c)2 + (c - a)2. A12B14C10D16Answer: B. 14 Read Explanation: Solution:Given:(a + b + c) = 17, and (a2 + b2 + c2) = 101Formula used:(a + b + c)2 = (a2 + b2 + c2) + 2 (ab + bc +ca)Calculation:(a + b + c)2 = (a2 + b2 + c2) + 2 (ab + bc +ca)⇒ 172 = 101 + 2 (ab + bc +ca)⇒ (ab + bc +ca) = 94 (a - b)2 + (b - c)2 + (c - a)2.⇒ 2 (a2 + b2 + c2) - 2 (ab + bc +ca)⇒ 101×2−2×94=14101\times{2}-2\times{94}=14101×2−2×94=14 Read more in App