If ab=95\frac{a}{b}=\frac{9}{5}ba=59, then what is the value of (2a+b)÷(a−b)?(2a + b)\div{(a-b)}?(2a+b)÷(a−b)? A194\frac{19}{4}419B235\frac{23}{5}523C234\frac{23}{4}423DCannot be determinedAnswer: 234\frac{23}{4}423 Read Explanation: Given:ab=95\frac{a}{b}=\frac{9}{5}ba=59Calculation:a=9b5a=\frac{9b}{5}a=59b(2a+b)÷(a−b)(2a+b)\div{(a-b)}(2a+b)÷(a−b)⇒2×9b5+b9b5−b⇒\frac{2\times{\frac{9b}{5}+b}}{\frac{9b}{5}-b}⇒59b−b2×59b+b⇒18b+5b59b−5b5⇒\frac{\frac{18b+5b}{5}}{\frac{9b-5b}{5}}⇒59b−5b518b+5b⇒23b4b=234⇒\frac{23b}{4b}=\frac{23}{4}⇒4b23b=423∴ The value of (2a + b) ÷(a−b)\div{(a-b) }÷(a−b)is 234\frac{23}{4}423 Read more in App