App Logo

No.1 PSC Learning App

1M+ Downloads

If ab=95\frac{a}{b}=\frac{9}{5}, then what is the value of (2a+b)÷(ab)?(2a + b)\div{(a-b)}?

A194\frac{19}{4}

B235\frac{23}{5}

C234\frac{23}{4}

DCannot be determined

Answer:

234\frac{23}{4}

Read Explanation:

Given:

ab=95\frac{a}{b}=\frac{9}{5}

Calculation:

a=9b5a=\frac{9b}{5}

(2a+b)÷(ab)(2a+b)\div{(a-b)}

2×9b5+b9b5b⇒\frac{2\times{\frac{9b}{5}+b}}{\frac{9b}{5}-b}

18b+5b59b5b5⇒\frac{\frac{18b+5b}{5}}{\frac{9b-5b}{5}}

23b4b=234⇒\frac{23b}{4b}=\frac{23}{4}

∴ The value of (2a + b) ÷(ab)\div{(a-b) }is 234\frac{23}{4}


Related Questions:

4 ൽ നിന്ന് എത്ര കുറച്ചാൽ 2.75 കിട്ടും?
1.69 ÷ 13 + 1.96 ÷ 14 + 4.41 ÷ 21 = ?

If 123 ×\times 356 = 43788, then 1.23 ×\times 0.356 = ?

The value of11+13+12+1/4\frac{1}{1+\frac{1}{3+\frac{1}{2+1/4}}}

Simplify the following:

[(0.4)+(4.6)2+(2.3)2÷5]3.24[{(-0.4)+(4.6)^2+(2.3)^2}\div5]-3.24