App Logo

No.1 PSC Learning App

1M+ Downloads

If ab=95\frac{a}{b}=\frac{9}{5}, then what is the value of (2a+b)÷(ab)?(2a + b)\div{(a-b)}?

A194\frac{19}{4}

B235\frac{23}{5}

C234\frac{23}{4}

DCannot be determined

Answer:

234\frac{23}{4}

Read Explanation:

Given:

ab=95\frac{a}{b}=\frac{9}{5}

Calculation:

a=9b5a=\frac{9b}{5}

(2a+b)÷(ab)(2a+b)\div{(a-b)}

2×9b5+b9b5b⇒\frac{2\times{\frac{9b}{5}+b}}{\frac{9b}{5}-b}

18b+5b59b5b5⇒\frac{\frac{18b+5b}{5}}{\frac{9b-5b}{5}}

23b4b=234⇒\frac{23b}{4b}=\frac{23}{4}

∴ The value of (2a + b) ÷(ab)\div{(a-b) }is 234\frac{23}{4}


Related Questions:

രണ്ട് സംഖ്യകൾ മ്മിൽ കുറച്ചപ്പോൾ ലഭിച്ചതും ആ സംഖ്യകളുടെ ഗുണനഫലവും തുല്യം.അവയിലൊരു സംഖ്യ 5/11 ആയാൽ അടുത്ത സംഖ്യ ഏത് ?
Which of the following is the highest common factor of 4266, 7848, 9540 ?
6x8 ÷ 12 + 3 x 24 -12 ÷ 6 + 8 =

Simplify:

0.623ˉ0.6\bar{23}

How many numbers are there between 100 and 300 which are multiples of 7?