App Logo

No.1 PSC Learning App

1M+ Downloads

If 1138=a+b2\sqrt{11-3\sqrt{8}}=a+b\sqrt{2}, then what is the value of (2a+3b)?

A7

B9

C3

D5

Answer:

C. 3

Read Explanation:

Solution:

Concept used:

(a – b)2 = a2 – 2ab + b2 

Calculations:

1138=a+b2\sqrt{11-3\sqrt{8}}=a+b\sqrt{2}

1132×2×2=a+b2\sqrt{11-3\sqrt{2\times{2}\times{2}}}=a+b\sqrt{2}

112×32=a+b2\sqrt{11-2\times{3\sqrt{2}}}=a+b\sqrt{2}

(3)2+(2)22×32=a+b2\sqrt{(3)^2+(\sqrt{2})^2-2\times{3\sqrt{2}}}=a+b\sqrt{2}

(32)2=a+b2\sqrt{(3-\sqrt{2})^2}=a+b\sqrt{2}

322=a+b23-2\sqrt{2} = a + b\sqrt{2}

Compare a and b 

⇒ a = 3 

⇒ b = -1 

Value of (2a + 3b) = 2×3+3×(1)2\times{3}+3\times{(-1)} 

⇒ 6 – 3 = 3 

∴ Value of 2a + 3b is 3


Related Questions:

If a3+b3+c33abc=126,a^3 + b^3 + c^3 - 3abc = 126, a + b + c = 6, then the value of (ab + bc + ca) is:

If x : y = 2 : 3 then the value of 3x+2y9x+5y\frac{3x+2y}{9x+5y} will be

Solve (y24)/3=20(y^2 - 4)/3 = 20.

തുറന്ന ചോദ്യങ്ങളുടെ പ്രത്യേകത അല്ലാത്തത് ഏത് ?
ഒരു സംഖ്യയെ 4 കൊണ്ടു ഗുണിച്ച് 10 കൂട്ടിയപ്പോൾ 130 കിട്ടി സംഖ്യ ഏതാണ് ?