App Logo

No.1 PSC Learning App

1M+ Downloads

If 1138=a+b2\sqrt{11-3\sqrt{8}}=a+b\sqrt{2}, then what is the value of (2a+3b)?

A7

B9

C3

D5

Answer:

C. 3

Read Explanation:

Solution:

Concept used:

(a – b)2 = a2 – 2ab + b2 

Calculations:

1138=a+b2\sqrt{11-3\sqrt{8}}=a+b\sqrt{2}

1132×2×2=a+b2\sqrt{11-3\sqrt{2\times{2}\times{2}}}=a+b\sqrt{2}

112×32=a+b2\sqrt{11-2\times{3\sqrt{2}}}=a+b\sqrt{2}

(3)2+(2)22×32=a+b2\sqrt{(3)^2+(\sqrt{2})^2-2\times{3\sqrt{2}}}=a+b\sqrt{2}

(32)2=a+b2\sqrt{(3-\sqrt{2})^2}=a+b\sqrt{2}

322=a+b23-2\sqrt{2} = a + b\sqrt{2}

Compare a and b 

⇒ a = 3 

⇒ b = -1 

Value of (2a + 3b) = 2×3+3×(1)2\times{3}+3\times{(-1)} 

⇒ 6 – 3 = 3 

∴ Value of 2a + 3b is 3


Related Questions:

An aeroplane is moving at a constant altitude 'h'. At 10:00 AM, it is seen at an elevation of 30°. 1 minute later, it is observed at an elevation of 60°. If the speed of the plane is 960 km/h, then find 'h'.
8 രൂപ കൂടി കിട്ടിയാൽ രാജുവിന് 100 രൂപ തികയ്ക്കാമായിരുന്നു. എങ്കിൽ രാജ്യവിൻ്റെ കൈയ്യിൽ എത്ര രൂപയുണ്ട്?
X # Y = XY + x - Y ആണ് എങ്കിൽ (6#5)× (3#2) എത്ര?
15/ P = 3 ആയാൽ P എത്ര ?

If a is positive and a2+1a2=7a^2+\frac{1}{a^2}=7, thenfind a3+1a3a^3+\frac{1}{a^3}.