If the altitude of an equilateral triangle is 123cm12\sqrt{3} cm123cm, then its area would be : A12 sq.cmB1443cm2144\sqrt{3} cm^21443cm2C72 sq.cmD363cm236\sqrt{3} cm^2363cm2Answer: 1443cm2144\sqrt{3} cm^21443cm2 Read Explanation: AD=123cmAD=12\sqrt{3}cmAD=123cmAB=2xcmAB=2xcmAB=2xcmBD=xcmBD=xcmBD=xcmFrom△ABD\triangle ABD△ABDAD=AB2−BD2AD=\sqrt{AB^2-BD^2}AD=AB2−BD2=(2x)2−x2=\sqrt{(2x)^2-x^2}=(2x)2−x2=4x2−x2=3x2=3x=\sqrt{4x^2-x^2}=\sqrt{3x^2}=\sqrt{3}x=4x2−x2=3x2=3x=>\sqrt{3}x=12\sqrt{3}x=12cmx=12cmx=12cmAB = 2x = 2 × 12 = 24 cm.Area of △ABC=34×side2\triangle ABC=\frac{\sqrt{3}}{4}\times{side^2}△ABC=43×side2=34×24×24=\frac{\sqrt{3}}{4}\times{24}\times{24}=43×24×24=1443cm=144\sqrt{3}cm=1443cm Read more in App