Challenger App

No.1 PSC Learning App

1M+ Downloads

In the given figure, TS || PR, ∠PRQ = 45° and ∠TQS = 75°. Find ∠TSQ.

image.png

A90°

B60°

C30°

D45°

Answer:

B. 60°

Read Explanation:

Solution:

Given:

TS || PR, ∠PRQ = 45° and ∠TQS = 75°

Calculations:

image.png

We know, ∠PRQ = 45°

By the definition of alternate angles ∠PRQ = ∠QTS = 45°

Therefore, 

⇒ ∠TSQ = 180° - (∠TQS + ∠QTS)

⇒ ∠TSQ = 180° - (75° + 45°)

⇒ ∠TSQ = 180° - 120° 

⇒ ∠TSQ = 60° 

Hence, the correct answer is 60°.


Related Questions:

ഒരു സമഗുണിത പ്രോഗ്രഷനിലെ ഏഴാം പദം 320, ഒന്നാംപദം 5 ആയാൽ പൊതുഗുണകം എത്ര ?
The 7th term of a GP is 8 times of 4th term. What will be the first term if 5th term is 48?
What is the sum of infinite geometric series with first term equal to 1 and common ratio is ½?
തന്നിരിക്കുന്ന ജ്യാമിതീയ ശ്രേണിയിലെ 2, 8, 32, 128,............. ഏത് പദമാണ് 2048 എന്ന സംഖ്യ?

line AB and CD intersect each other at 'O'. ∠AOC = 130°. Find the reflex angle of ∠BOC.

image.png