App Logo

No.1 PSC Learning App

1M+ Downloads

In the given figure, TS || PR, ∠PRQ = 45° and ∠TQS = 75°. Find ∠TSQ.

image.png

A90°

B60°

C30°

D45°

Answer:

B. 60°

Read Explanation:

Solution:

Given:

TS || PR, ∠PRQ = 45° and ∠TQS = 75°

Calculations:

image.png

We know, ∠PRQ = 45°

By the definition of alternate angles ∠PRQ = ∠QTS = 45°

Therefore, 

⇒ ∠TSQ = 180° - (∠TQS + ∠QTS)

⇒ ∠TSQ = 180° - (75° + 45°)

⇒ ∠TSQ = 180° - 120° 

⇒ ∠TSQ = 60° 

Hence, the correct answer is 60°.


Related Questions:

ഒരു G P യിലെ 4, 7, 10 പദങ്ങൾ യഥാക്രമം a,b,c ആയാൽ a,b,c ഇവ തമ്മിലുള്ള ബന്ധം എന്ത് ?
ഒരു സമഗുണിത പ്രോഗ്രഷനിലെ ഏഴാം പദം 320, ഒന്നാംപദം 5 ആയാൽ പൊതുഗുണകം എത്ര ?

In the following figure, ∠B : ∠C = 2 : 3, then the value of ∠B will be

image.png
In a triangle ABC, angle bisector of ∠B and ∠A intersect at O. ∠C is 82°. What is the measure of ∠BOA?
What is the sum of infinite geometric series with first term equal to 1 and common ratio is ½?