App Logo

No.1 PSC Learning App

1M+ Downloads

p(x)=2x2+3x+7p(x) =2x^2+3x+7,q(x)=6x2+8x9q(x)=6x^2+8x-9Find p(x)×q(x)p(x)\times{q(x)}

A12x4+32x3+49x2+28x6312x^4+32x^3+49x^2+28x-63

B12x4+36x3+39x2+31x6312x^4+36x^3+39x^2+31x-63

C12x4+34x3+46x2+27x6312x^4+34x^3+46x^2+27x-63

D12x4+34x3+48x2+29x6312x^4+34x^3+48x^2+29x-63

Answer:

12x4+34x3+48x2+29x6312x^4+34x^3+48x^2+29x-63

Read Explanation:

p(x)=2x2+3x+7p(x) =2x^2+3x+7,q(x)=6x2+8x9q(x)=6x^2+8x-9

p(x)×q(x)=2x2[6x2+8x9]+3x[6x2+8x9]+7[6x2+8x9]p(x)\times{q(x)}=2x^2[6x^2+8x-9]+3x[6x^2+8x-9]+7[6x^2+8x-9]

=12x4+16x318x2+18x3+24x227x+42x2+56x63=12x^4+16x^3-18x^2+18x^3+24x^2-27x+42x^2+56x-63

=12x4+34x3+48x2+29x63=12x^4+34x^3+48x^2+29x-63


Related Questions:

The product of the roots of 3x² - 13x + 6 = 0 is:
image.png

Find the reminder when p(x)=4x4+6x3+6x+6p(x)=4x^4+6x^3+6x+6 is divided by x+2x+2

If 3x - 2y = 10 and xy = 11, the value of 27x³ - 8y³ is_____
image.png