App Logo

No.1 PSC Learning App

1M+ Downloads

sin2x ന്ടെ Maclaurian Series വിപുലീകരണത്തിൽ x³ -ന്ടെ ഗുണാങ്കം ഏത് ?

A-4/3

B-2/3

C4/3

D8/3

Answer:

A. -4/3

Read Explanation:

Maclaurian series expansion

f(x)=f(0)+f(0)x+f"(0)2!x2+f(0)3!x3+.......f(x) = f(0) + f'(0)x + \frac{f"(0)}{2!}x^2+\frac{f'''(0)}{3!}x^3+.......

x³ -ന്ടെ ഗുണാങ്കം

=f(0)3!=\frac{f'''(0)}{3!}

f(x)=sin2xf(x)=sin2x

f(x)=2cos2xf'(x)=2cos2x

f(x)=4sin2xf''(x)=-4sin2x

f(x)=8cos2xf'''(x)=-8cos2x

=f(0)3!=8cos03!=86=43=\frac{f'''(0)}{3!}=\frac{-8cos0}{3!}=\frac{-8}{6}=\frac{-4}{3}


Related Questions:

y=x²+3x+2 ; d²y/dx²=
f(x)= x³ -3x +3 എന്ന ഏകദത്തിന്ടെ പ്രാദേശിക നിമ്നോന്നത വില ബിന്ദുക്കൾ കണ്ടുപിടിക്കുക.

lim (x -> 1) (3x+2) എത്ര?

x സൂചക സംഖ്യ 2 ആയ ബിന്ദുവിൽ y=x³-x+1 എന്ന വക്രത്തിന്ടെ തൊടുവരയുടെ ചരിവ്?
z= x⁴sin(xy³) ആയാൽ ∂z/∂y കണ്ടുപിടിക്കുക.