The value of tan60∘cosec245∘−sec260∘tan45∘cosec230∘sin245∘+sec260∘ is:
A-3(2 + √3)
B2(√3 - 2)
C3/(2 + √3)
D-3/(√3 - 2)
Answer:
A. -3(2 + √3)
Read Explanation:
Solution:
Given:
(cosec230°sin245° + sec260°)/(tan60°cosec245° - sec260°tan45°)
Concept used:
| 0° | 30° | 45° | 60° | 90° |
sin | 0 | 1/2 | 1/√2 | √3/2 | 1 |
cos | 1 | √3/2 | 1/√2 | 1/2 | 0 |
tan | 0 | 1/√3 | 1 | √3 | ∞ |
cosec | ∞ | 2 | √2 | 2/√3 | 1 |
sec | 1 | 2/√3 | √2 | 2 | ∞ |
cot | ∞ | √3 | 1 | 1/√3 | 0 |
Calculation:
(cosec230°sin245° + sec260°)/(tan60°cosec245° - sec260°tan45°)
⇒ (4 × 1/2 + 4)/(√3 × 2 – 4 × 1)
⇒ 6/(2√3 – 4)
⇒ 3/(√3 – 2)
Rationalise above value
⇒ 3/(√3 - 2)
⇒ - 3/(2 - √3) × (2 + √3)/(2 + √3)
⇒ -3(2 + √3)/{4 - 3} = -3(2 + √3)
∴ The value is -3(2 + √3).