App Logo

No.1 PSC Learning App

1M+ Downloads

The value of sin238° – cos252° is:

A√2

B1

C0

D1/√2

Answer:

C. 0

Read Explanation:

Solution:

Given:

sin238° – cos252° 

Concept Used:

sin2θ + cos2θ = 1

sin(90° – θ ) = cosθ 

Calculation:

sin238° – cos252° = sin238° – sin2(90° – 52°)

⇒ sin238° – sin238°

⇒ 0

⇒ sin238° – cos252° = 0

∴ sin238°  cos252° = 0


Related Questions:

cosA=0.8, then what is tanA ?

Find the area of the parallelogram with sides AB = 6, AC = 3, ∠ BAC = 60

1000114769.jpg
image.png
image.png

What is the value of sin2 45° + cos2 45° ?