App Logo

No.1 PSC Learning App

1M+ Downloads

The value of sin238° – cos252° is:

A√2

B1

C0

D1/√2

Answer:

C. 0

Read Explanation:

Solution:

Given:

sin238° – cos252° 

Concept Used:

sin2θ + cos2θ = 1

sin(90° – θ ) = cosθ 

Calculation:

sin238° – cos252° = sin238° – sin2(90° – 52°)

⇒ sin238° – sin238°

⇒ 0

⇒ sin238° – cos252° = 0

∴ sin238°  cos252° = 0


Related Questions:

Find (1 - cos² θ)(cot²θ + 1) - 1.

If 4 cos2θ - 3 sin2θ + 2 = 0, then the value of tanθ is (where 0 ≤ θ < 90°)

If cos A + cos B + cos C = 3, then what is the value of sin A + sin B + sin C?
A triangle is to be drawn with one side 9cm and an angle on it is 30 what should be the minimum length of the side opposiste to this angle?
If xsin30°cos60° = sin45°cos45°, then the value of x is: