App Logo

No.1 PSC Learning App

1M+ Downloads

The value of sin238° – cos252° is:

A√2

B1

C0

D1/√2

Answer:

C. 0

Read Explanation:

Solution:

Given:

sin238° – cos252° 

Concept Used:

sin2θ + cos2θ = 1

sin(90° – θ ) = cosθ 

Calculation:

sin238° – cos252° = sin238° – sin2(90° – 52°)

⇒ sin238° – sin238°

⇒ 0

⇒ sin238° – cos252° = 0

∴ sin238°  cos252° = 0


Related Questions:

figure shows a triangle and its circumcircle what is the radius of the circle

1000115094.jpg

AC=5 cm, angle ABC =60°

If tan 45o + sec 60o = x, fine the value of x.
image.png

The value of sin252+2+sin2384cos2435+4cos247\frac{{{{\sin }^2}{}52^\circ + 2 + {{\sin }^2}{{ }}38^\circ }}{{4{}{{\cos }^2}43^\circ - 5 + 4{{\cos }^2}{{}}47^\circ }}

If cotθ = 4/3, the find the value of 5sinθ + 4cosθ – 3.