App Logo

No.1 PSC Learning App

1M+ Downloads

what is the ratio of sides of a triangle with angle 45°, 60°, 75°

1000114722.jpg

A1 : 2 : 3

B√2 : √3 : 1

C2 : 6 : √3

D2 : √6 : 1 + √3

Answer:

D. 2 : √6 : 1 + √3

Read Explanation:

1000114730.jpg

Cut triangle ABC into 2 by drawing a perpendicular through angle ACB

So we get two triangles ACD with angles 30° 60° 90° and triangle BDC with angles 45° 45° 90°

We know that,

ratio of sides of a triangle with angles 45°, 45°, 90° is 1 : 1 : √2

and, ratio of sides of triangle with angle 30, 60, 90 is = 1 : √3 : 2

So the ratio of sides triangle ABC is 2/√3 : √2 : 1 + 1/√3

= 2 : √2√3 : √3 + 1

= 2 : √6 : 1 + √3


Related Questions:

Find the Value ofcos30sin30sin60+cos60\frac{\cos 30^\circ - \sin 30^\circ}{\sin 60^\circ + \cos 60^\circ}

Convert Degree to Radian: 30

Find x if sinx=12sin x=\frac{1}{2}

Find the area of the parallelogram with sides AB = 6, AC = 3, ∠ BAC = 30

1000114769.jpg
Find (1 - cos² θ)(cot²θ + 1) - 1.