App Logo

No.1 PSC Learning App

1M+ Downloads

What is the Value of cos(50+A)sin(40A)cos40sec40\frac{\cos(50^\circ +A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

A0.5

B1

C2

D0

Answer:

D. 0

Read Explanation:

Solution:

Given:

cos(50+A)sin(40A)cos40sec40\frac{\cos(50^\circ +A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

Calculation:

cos(50+A)sin(40A)cos40sec40\frac{\cos(50^\circ +A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

sin(90(50+A))sin(40A)cos40sec40\frac{\sin(90 - (50^\circ +A))-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

sin(40A)sin(40A)cos40sec40\frac{\sin(40^\circ-A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

⇒ 0

∴ The required answer is 0.

$


Related Questions:

If tan x = cot(45° + 2x), then what is the value of x?

Find the area of the triangle; AB = 5, BC = 8 and ∠CAB = 60

1000114764.jpg

Conert Radian to Degree :

7π4\frac{7\pi}{4}

Find cos4Asin4A.cos^4 A - sin^4 A.

If sec 44 cosec (3A-50°), where 44 and 34 are acute angles, find the value of A + 75.