App Logo

No.1 PSC Learning App

1M+ Downloads

What is the Value of cos(50+A)sin(40A)cos40sec40\frac{\cos(50^\circ +A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

A0.5

B1

C2

D0

Answer:

D. 0

Read Explanation:

Solution:

Given:

cos(50+A)sin(40A)cos40sec40\frac{\cos(50^\circ +A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

Calculation:

cos(50+A)sin(40A)cos40sec40\frac{\cos(50^\circ +A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

sin(90(50+A))sin(40A)cos40sec40\frac{\sin(90 - (50^\circ +A))-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

sin(40A)sin(40A)cos40sec40\frac{\sin(40^\circ-A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

⇒ 0

∴ The required answer is 0.

$


Related Questions:

If tan 45 + sec 60 = x, find the value of x.
In any triangle ABC cos- A+B/ 2 is equal to:
The minute hand of a watch is 1.5 cm long. How far does its tip move in 40 minutes ? (use ∏=3.14)

Find the value of tan60tan151+tan60tan15\dfrac{\tan 60^\circ - \tan 15^\circ}{1 + \tan 60^\circ \tan 15^\circ}

Find cos4Asin4A.cos^4 A - sin^4 A.