App Logo

No.1 PSC Learning App

1M+ Downloads

What is the Value of cos(50+A)sin(40A)cos40sec40\frac{\cos(50^\circ +A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

A0.5

B1

C2

D0

Answer:

D. 0

Read Explanation:

Solution:

Given:

cos(50+A)sin(40A)cos40sec40\frac{\cos(50^\circ +A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

Calculation:

cos(50+A)sin(40A)cos40sec40\frac{\cos(50^\circ +A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

sin(90(50+A))sin(40A)cos40sec40\frac{\sin(90 - (50^\circ +A))-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

sin(40A)sin(40A)cos40sec40\frac{\sin(40^\circ-A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

⇒ 0

∴ The required answer is 0.

$


Related Questions:

image.png

Find x if 2sin2x - 1 = 0

If 3 sec2 x - 4 = 0, then the value of x (0 < x < 90°)

If cos A + cos B + cos C = 3, then what is the value of sin A + sin B + sin C?

what is the ratio of sides of a triangle with angle 45°, 60°, 75°

1000114722.jpg