Challenger App

No.1 PSC Learning App

1M+ Downloads
(tan57° + cot37°)/ (tan33° + cot53° ) =?

Asin53° + cos33°

Btan53°× tan57°

Csin53° × sin57°

Dcos57° × cos53°

Answer:

B. tan53°× tan57°

Read Explanation:

Solution: Given: (tan57° + cot37°)/ (tan33° + cot53°) We know cot(A) = tan(90-A)​ So, [tan 33° = cot 57° and cot37° = tan 53° ] ⇒ (tan57° + tan 53°) / (cot 57° + cot 53°) ⇒ (tan57° + tan 53°) / (1/tan 57° + 1/tan 53°) ⇒ (tan57° + tan53°) / {(tan53° + tan57°)/tan53°× tan57°} ⇒ tan53° × tan57°


Related Questions:

circumradius of an equilateral triangle of sides 8 cm

Find the value of

Sin0o×sin1o×sin2o×sin30...............Sin890isSin0^o\times{sin1^o}\times{sin2^o}\times{sin3^0}...............Sin89^0 is

If Cos 3θ = Sin (θ - 34°), then the value of θ as an acute angle is:
image.png
sin A = 1/2 and cos B = 1/2 , then the value of (A+B) is