Challenger App

No.1 PSC Learning App

1M+ Downloads
The area of a sector of a circle is 88 cm2 and the angle of the sector is 120°. Find the radius of the circle.

A12212\sqrt{2}

B8.4 cm

C2212\sqrt{21}

D6146\sqrt{14}

Answer:

2212\sqrt{21}

Read Explanation:

Area of a sector = πr² × θ/360°

θ = angle of the sector

r = radius

Calculation:

According to the question,

120/360×πr2=88120/360\times{\pi{r^2}}=88

πr2=88×3\pi{r^2}=88\times3

22/7×r2=88×322/7\times{r^2}=88\times3

r2=88×3×722r^2=\frac{88\times3\times7}{22}

r=221r=2\sqrt{21}


Related Questions:

കേന്ദ്രം ആധാര ബിന്ദു ആയ വൃത്തം (6,8) എന്ന ബിന്ദുവിലൂടെ കടന്നു പോകുന്നു എങ്കിൽ വൃത്തത്തിൻ്റെ ആരം എത്ര ?

A circle is drawn with centre O and radius 2 centimetres. The area of the unshaded region is

WhatsApp Image 2025-09-26 at 09.05.18.jpeg
What is the length of the tangent to the circle x²+y²=9 from the point (4,0)

The area of a circle is increased by 22 cm2 when its radius is increased by 1 cm. The original radius of the circle is

Find the perimeter of the circle with radius 28 cm