Challenger App

No.1 PSC Learning App

1M+ Downloads
The area of a sector of a circle is 88 cm2 and the angle of the sector is 120°. Find the radius of the circle.

A12212\sqrt{2}

B8.4 cm

C2212\sqrt{21}

D6146\sqrt{14}

Answer:

2212\sqrt{21}

Read Explanation:

Area of a sector = πr² × θ/360°

θ = angle of the sector

r = radius

Calculation:

According to the question,

120/360×πr2=88120/360\times{\pi{r^2}}=88

πr2=88×3\pi{r^2}=88\times3

22/7×r2=88×322/7\times{r^2}=88\times3

r2=88×3×722r^2=\frac{88\times3\times7}{22}

r=221r=2\sqrt{21}


Related Questions:

(x - 3)² + (y + 4 )² = 100 ആയ വൃത്തത്തിന്റെ ആരം എന്ത് ?

In the figure the radius of the circle is 1 centimetre. The vertices of the square are points on the circle. The area of the unshaded region is:

WhatsApp Image 2024-12-03 at 12.33.19.jpeg

In the figure, O and P are the centres of two circles. The measure of <ACM is:

WhatsApp Image 2024-12-03 at 16.03.50.jpeg

Find the area of the sector if the radius is 5 cm and with an angle of 50°.
ഒരു വൃത്തത്തിലെ ആരo 9 സെ.മീ. ആയാൽ അതിലെ ഏറ്റവും നീളം കൂടിയ ഞാണിന്റെ നീളം എത്ര ?