The area of the parallelogram whose length is 30 cm, width is 20 cm and one diagonal is 40cm isA20015cm2200\sqrt{15}cm^220015cm2B10015cm2100\sqrt{15}cm^210015cm2C30015cm2300\sqrt{15}cm^230015cm2D15015cm2150\sqrt{15}cm^215015cm2Answer: 15015cm2150\sqrt{15}cm^215015cm2 Read Explanation: .In △ABD\triangle{ ABD}△ABD, AB = 20 cm. AD = 30cm. BD = 40 cm.Semi–Perimeter (s)=a+b+c2=\frac{a+b+c}{2}=2a+b+c=20+30+402=\frac{20+30+40}{2}=220+30+40=45cm=45cm=45cmArea of △ABD=s(s−a)(s−b)(s−c)\triangle{ABD} = \sqrt{s(s-a)(s-b)(s-c)}△ABD=s(s−a)(s−b)(s−c)=45(45−20)(45−30)(45−40)=\sqrt{45(45-20)(45-30)(45-40)}=45(45−20)(45−30)(45−40)=45×25×15×5=\sqrt{45\times{25}\times{15}\times{5}}=45×25×15×5=5×3×3×25×3×5×5=\sqrt{5\times{3}\times{3}\times{25}\times{3\times{5}}\times{5}}=5×3×3×25×3×5×5=5×5×315=5\times{5}\times{3}\sqrt{15}=5×5×315=7515=75\sqrt{15}=7515sq.cmArea of parallelogram ABCD =2×7515=2\times{75\sqrt{15}}=2×7515=15015=150\sqrt{15}=15015 sq.cm Read more in App