Challenger App

No.1 PSC Learning App

1M+ Downloads

The circumference of a circle is 11 cm and the angle of a sector of the circle is 60°. The area of the sector is (useπ=227)(use \pi=\frac{22}{7})

A12948cm21\frac{29}{48}cm^2

B22948cm22\frac{29}{48}cm^2

C12748cm21\frac{27}{48}cm^2

D$2\frac{29}{48}cm^2$

Answer:

12948cm21\frac{29}{48}cm^2

Read Explanation:

Let the radius of the circle be r cm.

image.png

According to the question,

2πr=112\pi{r} = 11

2×227×r=112\times{\frac{22}{7}}\times{r} = 11

r=11×72×22=74cmr=\frac{11\times{7}}{2\times{22}}=\frac{7}{4}cm

Area of the sector AOB =θ360o×πr2=\frac{\theta}{360^o}\times{\pi{r^2}}

=60o360o×227×74×74=\frac{60^o}{360^o}\times{\frac{22}{7}}\times{\frac{7}{4}}\times{\frac{7}{4}}

=7748=12948sqcm=\frac{77}{48}=1\frac{29}{48}sqcm


Related Questions:

Find the length of a sector with central angle 180 and radius 7cm

In the figure, O is the centre of the circle and A, B, C are points on it. <OAC=22°, <OBC= 42°. The measure of <BOA is :

WhatsApp Image 2024-12-02 at 20.23.42.jpeg
28 സെ. മീ. ആരമുള്ള ഒരു വൃത്തത്തിന്റെ പരിധി എത്ര ?
The equation of the circle with centre (8, 5) and radius 6 is :
വൃത്തത്തിന്റെ സമവാക്യം (h, k) = (3, 6), ആരം 4 ആകുന്നത് എന്താണ്?