Challenger App

No.1 PSC Learning App

1M+ Downloads
The co-ordinates of the points which are equidistant from the points (-1,5),(1,1) and (9,5) are

A(4,1)

B(5,4)

C(1,5)

D(4,5)

Answer:

D. (4,5)

Read Explanation:

let the points be P(p,q)

d=(x2x1)2+(y2y1)2d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

A=(-1,5)

B=(1,1)

C=(9,5)

dPA=(p+1)2+(q5)2d_{PA}=\sqrt{(p+1)^2+(q-5)^2}

dPB=(p1)2+(q1)2d_{PB}=\sqrt{(p-1)^2+(q-1)^2}

dPC=(p9)2+(q5)2d_{PC}=\sqrt{(p-9)^2+(q-5)^2}

dPA=dPBd_{PA}=d_{PB}

(p+1)2+(q5)2=(p1)2+(q1)2(p+1)^2+(q-5)^2=(p-1)^2+(q-1)^2

p2+2p+1+q210q+25p^2+2p+1+q^2-10q+25

=p22p+1+q22q+1=p^2-2p+1+q^2-2q+1

4p8q+24=04p-8q+24=0

p2q+6=0p-2q+6=0

dPC=dPBd_{PC}=d_{PB}

(p9)2+(q5)2=(p1)2+(q1)2(p-9)^2+(q-5)^2=(p-1)^2+(q-1)^2

p218p+81+q210q+25p^2-18p+81+q^2-10q+25

=p22p+1+q22q+1=p^2-2p+1+q^2-2q+1

16p8q+104=0-16p-8q+104=0

2pq+13=0-2p-q+13=0

p2q+6=0×2p-2q+6=0 \times 2

2p4q+12=02p-4q+12=0

2pq+13=0-2p-q+13=0

5q=25-5q=-25

q=5q=5

p2q+6=0p-2q+6=0

p4=0p-4=0

p=4p=4

(4,5)


Related Questions:

The area of a triangle is 85 cm² and its base is 5 cm. Find the height of the triangle corresponding to this given base.
In ∆PQR, ∠P : ∠Q : ∠R = 1 : 3 : 5, what is the value (in degrees) of ∠R - ∠P?
In triabgle ABC, C is the midpoint of BD, AB=10cm ,AD=12 cm AC=9cm find BD ?
The volume of a cube is 6,58,503 cm3cm^3. What is twice the length (in cm) of its side?
The perimeter of a square is 24, then its diagonal is of length