App Logo

No.1 PSC Learning App

1M+ Downloads
The diagonal of the square is 8√2 cm. Find the diagonal of another square whose area is triple that of the first square.

A858\sqrt 5

B838\sqrt 3

C828\sqrt 2

D868\sqrt 6

Answer:

868\sqrt 6

Read Explanation:

Solution: Concept Used: Diagonal of square = √2 a Calculations: Diagonal of square = √2 a So, √2 a = 8√2 ⇒ a = 8 ⇒ a² = 64 cm² So, the area if another square = 3(64) = 192 So, it's diagonal= √2 a = √2 × √192 = 8√6 cm Hence, The Required value is 8√6 cm


Related Questions:

The ratio of sides of a triangle is 3:4:5 and area of the triangle is 72 square unit. Then the area of an equilateral triangle whose perimeter is same as that of the previous triangle is
The perimeter of an isosceles triangle is 91 cm. If one of the equal sides measures 28 cm, then what is the value of the other non-equal side?
ഒരു ചതുരത്തിന്റെ നീളം 10 സെ.മീറ്ററും വീതി 8 സെ.മീറ്ററും ആയാൽ വിസ്തീർണ്ണം എത്ര?
ഒരു ചതുരക്കട്ടയുടെ നീളം, വീതി, ഉയരം ഇവ തമ്മിലുള്ള അംശബന്ധം 4:2:5. വ്യാപ്തം 2560 ഘനസെന്റിമീറ്റർ ആയാൽ ഉയരം എത്ര ?
If the circumference of a circle is reduced by 50%, its area will be reduced by :