Given: Initial diameter = D , Initial buckling load = Pb1 ; Final diameter after 50% decreased = D/2, final buckling load = Pb2</p><pstyle="color:rgb(0,0,0);margin−top:2px;margin−bottom:2px"data−pxy="true">DesignofcolumnsusingEuler′stheoryofbuckling:P_b =\frac{\pi ^ 2 EA K_{min} ^ 2}{ L_e ^ 2}radiusofgyration:K_{{min}_1}=\sqrt{\frac{\frac{\pi}{64} D^4}{\frac{\pi}{4}D^2}}=\frac{D}{4}andK_{{min}_2}=\sqrt{\frac{\frac{\pi}{64}(\frac{D}{4})^4}{\frac{\pi}{4}(\frac{D}{2})^2}}=\frac{D}{8}thereforeBucklingloadisgivenby:\frac{P_{b_1}}{P_{b_2}}=\frac{\frac{\pi^2E(\frac{D^2}{4})(\frac{D}{4})^2}{L^2}}{\frac{\pi^2E(\frac{D^2}{16})(\frac{D}{8})^2}{L^2}}=16\Rightarrow \frac{P_{b_1}}{P_{b_2}}=16 \Rightarrow P_{b_2}=\frac{P_{b_1}}{16} \Rightarrow P_{b_2}=.0625 P$