The distance between two points (-6,y) and (18,6) is 26 units. Find the value of y.A4B-4C6D-6Answer: B. -4 Read Explanation: D=(x2−x1)2+(y2−y1)2D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}D=(x2−x1)2+(y2−y1)2D=(18−(−6))2+(6−y)2D=\sqrt{(18-(-6))^2+(6-y)^2}D=(18−(−6))2+(6−y)226=(24)2+(6−y)226=\sqrt{(24)^2+(6-y)^2}26=(24)2+(6−y)2squaring on both sides676=242+(6−y)2676 = 24^2 +(6-y)^2676=242+(6−y)2676−576=(6−y)2676-576=(6-y)^2676−576=(6−y)2100=(6−y)2100=(6-y)^2100=(6−y)2102=(6−y)210^2=(6-y)^2102=(6−y)210=6−y10=6-y10=6−yy=−4y=-4y=−4 Read more in App