Challenger App

No.1 PSC Learning App

1M+ Downloads
The greatest number of 3 digits which is divisible by 5, 15, 21 and 49 is :

A715

B765

C785

D735

Answer:

D. 735

Read Explanation:


  • To find the greatest 3-digit number divisible by 5, 15, 21, and 49, we need to find the LCM (Least Common Multiple) of these numbers and then find the greatest multiple of this LCM that is less than 1000.

  • Step 1: Find the LCM of 5, 15, 21, and 49

    • 15 = 3 × 5

    • 21 = 3 × 7

    • 49 = 7²

  • So the LCM = 5 × 3 × 7² = 5 × 3 × 49 = 735

  • Step 2: Check if there's a larger multiple of 735 that is still a 3-digit number
    735 × 2 = 1470, which exceeds 999 (the largest 3-digit number)

  • Therefore, 735 is the greatest 3-digit number that is divisible by 5, 15, 21, and 49.




Related Questions:

When a natural number 'n' is divided by 4, the remainder is 3. What will be the remainder when (2n + 3) is divided by 4?
രണ്ട് സംഖ്യകളുടെ ആകെത്തുക 8 ഉം ഗുണനഫലം 15 ഉം ആണെങ്കിൽ, അവയുടെ വ്യൂൽ ക്രമങ്ങളുടെ തുക എത്രയാണ് ?
ഒരു സംഖ്യയുടെ ഇരട്ടി 44 ആണെങ്കിൽ സംഖ്യയുടെ പകുതി എത്ര ?
853 × 1346 × 452 × 226 എന്ന ഗുണന ഫലത്തിൽ ഒറ്റയുടെ സ്ഥാനത്തെ സംഖ്യ ഏത് ?
Find the mid point between the numbers -1/5, 2/3 in the number line