Challenger App

No.1 PSC Learning App

1M+ Downloads
The incomes of A and B are in the ratio of 3:2 and their expenditures are Rs. 14,000 and Rs. 10,000 respectively. If A saves Rs. 4000, then B’s savings will be?

A4000

B2000

C3000

D5000

Answer:

B. 2000

Read Explanation:

LettheincomeofAandBbe3xand2x</p><pstyle="color:rgb(0,0,0);margintop:2px;marginbottom:2px"datapxy="true">Let the income of A and B be 3x and 2x</p><p style="color: rgb(0,0,0); margin-top: 2px; margin-bottom: 2px" data-pxy="true">Income-expenditure = savings

3x14000=40003x-14000=4000

3x=180003x=18000

x=6000x=6000

Income of $B=2x$

Savings of B is =2x10000=2x-10000

=(2×6000)10000=(2\times{6000})-10000

=1200010000=12000-10000

=2000=2000


Related Questions:

A certain sum is divided between A, B, C and D such that the ratio of the shares of A and B is 3 ∶ 4, that of B and C is 5 ∶ 6 and that of C and D is 9 ∶ 10. If the difference between the shares of A and C is Rs.3,240, then what is the share of D?
A, B and C together invests Rs. 53,000 in a business. A invests Rs. 5,000 more than B and B invests Rs. 6,000 more than C. Out of a total profit of Rs. 31,800, find the share of A.
'A', 'B', 'C' എന്നീ മൂന്ന് ബോക്സുകളിൽ 5 : 2 : 3 എന്ന അനുപാതത്തിൽ പന്തുകൾ അടങ്ങിയിരിക്കുന്നു. തുടർന്ന്, 'B' യിൽ നിന്ന് 2 പന്തുകൾ എടുത്ത് C യിലേക്ക് ഇട്ടു. പുതിയ അനുപാതം 3 : 1 : 2 ആണ്. അപ്പോൾ ആകെ എത്ര പന്തുകൾ ആണ് ഉള്ളത് ?
The two numbers whose mean proportional is 14 and third proportional is 4802 are:
A ∶ B = 4 ∶ 5, B ∶ C = 7 ∶ 9 ആണെങ്കിൽ, A ∶ B ∶ C കണ്ടെത്തുക