Challenger App

No.1 PSC Learning App

1M+ Downloads
The lengths of the adjacent sides of a parallelogram are 5 centimetres and 12 centimetres. The length of one of its diagonals is 13 centimetres. The area of the parallelogram is :

A400

B169

C40

D60

Answer:

D. 60

Read Explanation:

Identify the triangle: A diagonal divides a parallelogram into two identical triangles.

The sides of one of these triangles are the two adjacent sides of the parallelogram (5 cm and 12 cm) and the diagonal (13 cm).

Check for a right-angled triangle:

We can use the Pythagorean theorem (a² +b² = c² ) to check if this is a right-angled triangle.

Let a=5 and b=12.

5² +12² =25+144=169

The diagonal's length squared is 13² =169.

Since 5² +12² =13² , the triangle is a right-angled triangle.

This means the two adjacent sides, 5 cm and 12 cm, are perpendicular to each other and serve as the base and height of the parallelogram.

Calculate the area: The area of a parallelogram is given by the formula

A=base × height.

A=12 cm×5 cm

A=60 cm²


Related Questions:

If the circumference of a circle is 22 cm, find the area of the semicircle.
വികർണ്ണം 10 സെ. മീ. ആയ സമചതുരത്തിന്റെ പരപ്പളവ് എത്ര ?
If the length and breadth of a rectangle are in the ratio 3 : 2 and its perimeter is 20 cm, then the area of the rectangle (in sq.cm) is :
R ആരമുള്ള ഒരു ഗോളത്തിന് ഉള്ളിൽ ആലേഖനം ചെയ്യാൻ പറ്റുന്ന പരമാവധി വ്യാപ്തമുള്ള സിലിണ്ടാറിൻ്റെ ഉയരം എത്ര?
ഒരു ഗോളത്തിൻ്റെ ആരം 3cm ആണെങ്കിൽ, അതിൻ്റെ വ്യാപ്തം _____cm3 ആണ്