App Logo

No.1 PSC Learning App

1M+ Downloads
The lengths of the adjacent sides of a parallelogram are 5 centimetres and 12 centimetres. The length of one of its diagonals is 13 centimetres. The area of the parallelogram is :

A400

B169

C40

D60

Answer:

D. 60

Read Explanation:

Identify the triangle: A diagonal divides a parallelogram into two identical triangles.

The sides of one of these triangles are the two adjacent sides of the parallelogram (5 cm and 12 cm) and the diagonal (13 cm).

Check for a right-angled triangle:

We can use the Pythagorean theorem (a² +b² = c² ) to check if this is a right-angled triangle.

Let a=5 and b=12.

5² +12² =25+144=169

The diagonal's length squared is 13² =169.

Since 5² +12² =13² , the triangle is a right-angled triangle.

This means the two adjacent sides, 5 cm and 12 cm, are perpendicular to each other and serve as the base and height of the parallelogram.

Calculate the area: The area of a parallelogram is given by the formula

A=base × height.

A=12 cm×5 cm

A=60 cm²


Related Questions:

ഒരേ ചുറ്റളവുള്ള ഒരു സമചതുരത്തിന്റെ വിസ്തീർണ്ണവും ഒരു വൃത്തത്തിന്റെ വിസ്തീർണ്ണവും തമ്മിലുള്ള അനുപാതം ഇതാണ്:
Three sides of a triangular field are of length 15 m, 20 m and 25m long respectively. Find the cost of sowing seeds in the field at the rate of 5 rupees per sq.m.
ഒരു കോൺ 45° ആയ ഒരു മട്ടത്രികോണത്തിൻറെ ലംബവശത്തിൻ്റെ നീളം 8 cm ആയാൽ അതിൻ്റെ കർണ്ണത്തിന്റെ നീളം എത്ര? *
The radius of a wheel is 21 cm. How many revolutions will it make in travelling 924 m (use π = 22/7 )
In a triangle, if the longest side has length 15 cm, one of the another side has length 12 cm and its perimeter is 34 cm, then the area of the triangle in cm2 is: