App Logo

No.1 PSC Learning App

1M+ Downloads
The radius of a circle is increased by 50%. What is the percent increase in its area?

A50%

B125%

C75%

D100%

Answer:

B. 125%

Read Explanation:

Understanding Percentage Increase in Circle Area

Key Concepts:

  • The area of a circle is calculated using the formula: $A = \pi r^2$, where $A$ is the area and $r$ is the radius.

  • A percentage increase means finding out how much a quantity has grown relative to its original value, expressed as a fraction of 100.

Problem Breakdown:

  • When the radius of a circle is increased by 50%, the new radius becomes 1.5 times the original radius.

  • Let the original radius be $r$. The new radius will be $r + 0.50r = 1.50r$.

  • The original area of the circle is $A_{original} = \pi r^2$.

  • The new area of the circle is $A_{new} = \pi (1.50r)^2 = \pi (2.25r^2) = 2.25 \pi r^2$.

  • The increase in area is $A_{new} - A_{original} = 2.25 \pi r^2 - \pi r^2 = 1.25 \pi r^2$.

  • To find the percent increase in area, we use the formula: $\left( \frac{\text{Increase in Area}}{\text{Original Area}} \right) \times 100\%$.

  • Percent Increase $= \left( \frac{1.25 \pi r^2}{\pi r^2} \right) \times 100\% = 1.25 \times 100\% = 125\%$.


Related Questions:

The diagonal of a square A is (a+b). The diagonal of a square whose area is twice the area of square A, is
Find the length of the longest rod which can be put in the room of measure 20m x 20m x 10m.
സമചതുര സ്തംഭാകൃതിയിലുള്ള ഒരു തടികഷ്‌ണത്തിന്റെ പാദത്തിൻ്റെ വശങ്ങൾക്ക് 10 സെ. മീ. നീളമുണ്ട്. സ്തംഭത്തിന് 20 സെ. മീ. ഉയരമുണ്ട്. ഇതിൽ നിന്ന് ചെത്തി യെടുക്കാവുന്ന ഏറ്റവും വലിയ വൃത്തസ്തംഭത്തിൻ്റെ വ്യാപ്തം എത്ര ?
The length and breadth of a rectangular piece of a land are in a ratio 5 : 3. The owner spent Rs. 6000 for surrounding it from all sides at Rs. 7.50 per metre. The difference between its length and breadth is
വികർണ്ണം 10 സെ. മീ. ആയ സമചതുരത്തിന്റെ പരപ്പളവ് എത്ര ?