Challenger App

No.1 PSC Learning App

1M+ Downloads

The sides of triangles are 10cm, 24cm, and 26cm. At each vertex of the triangle, circles of radius 3cm are drawn. What is the area of the triangle in sqcm, excluding the portion enclosed by circles? (π=3.14)(\pi=3.14).

A105.87

B110

C126.6

D114

Answer:

A. 105.87

Read Explanation:

sides of are trianlge values are triplets so it is an right angled triangle.

image.png

Area of Remaining portion = Area of \triangle - Area of Sector

Area of Sector = θ360o×πr2\frac{\theta}{360^o}\times{\pi{r^2}}

Radius,r=3cmRadius,r=3cm

Base b= 24., height h=10cm

Area of remaining portion = 12bhθ1360o×πr2+θ2360o×πr2+θ3360o×πr2\frac{1}{2}{bh}-\frac{\theta_1}{360^o}\times{\pi{r^2}}+\frac{\theta_2}{360^o}\times{\pi{r^2}}+\frac{\theta_3}{360^o}\times{\pi{r^2}}

=>\frac{1}{2}{bh}-\frac{\pi{r^2}}{360^o}[\theta_1+\theta_2+\theta_3]

Sum of interior angles of an triangle is 180o180^o

Here,θ1+θ2+θ3=180oHere, \theta_1+\theta_2+\theta_3=180^o

=>\frac{1}{2}{bh}-\frac{180^o}{360^o}{\pi{r^2}}

=>\frac{1}{2}\times{24}\times{10}-\frac{1}{2}\times{3.14\times{3\times{3}}}

=>\frac{1}{2}[240-28.26]

=>105.87


Related Questions:

Observe the picture of a hall. It has been divided by a line. One part of the hall is a stage of length x and breadth y. The remaining area of the hall is a square. What is the total area of the hall?

image.png

Calculate the length of the diagonal of a square if the area of the square is 32cm232 cm^2.

What is the eccentricity of the conic with equation 3y²-x²=108
ഒരു സമചതുരപ്പെട്ടിയുടെ ഒരു വശം 30 സെ.മീ. ആണ്. അതിനുള്ളിൽ 5 സെ.മീ. വശങ്ങളുള്ള എത്ര സമചതുരക്കട്ടകം വയ്ക്കാം?

What do we get on simplifying the expression xx+1+x+1x1x(x+1)\frac{x}{x+1}+\frac{x+1}{x}-\frac{1}{x(x+1)}