Challenger App

No.1 PSC Learning App

1M+ Downloads
The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is

A527\sqrt{\frac{52}{7}}

B527\frac{52}{7}

C6\sqrt{6}

D6

Answer:

527\sqrt{\frac{52}{7}}

Read Explanation:

Solution:

Given:

Given observation: 6, 5, 9, 13, 12, 8, 10

Concept used:

Standard deviation, σ=xi2n(xin)2\sigma = \sqrt {\frac{\sum x^2_i}{n}-{(\frac{\sum x_i}{n})}^2}

Calculation:

n = 7

xin=6+5+9+13+12+8+107=9\sum \frac{x_i}{n} = \frac {6 + 5 + 9 + 13 + 12 + 8 + 10}{7}=9

xi2n=62+52+92+132+122+82+1027=6197\frac{\sum x^2_i}{n} = \frac {6^2 + 5^2 + 9^2 + 13^2 + 12^2 + 8^2 + 10^2}{7}=\frac{619}{7}

Now, the standard deviation,

619794\sqrt{\frac{619}{7}-9^4}

=527=\sqrt{\frac{52}{7}}

∴ The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is  527\sqrt{\frac{52}{7}}


Related Questions:

x∽U(-3,3) , P(x > k)=1/3 ആണെങ്കിൽ k എത്ര ?
ഒരു സമചതുര കട്ട എറിയുന്നു . ഒരു അഭാജ്യ സംഖ്യ കിട്ടാതിരിക്കാനുള്ള സാധ്യത?

താഴെ കൊടുത്തിരിക്കുന്നത് ഒരു വേറിട്ട അനിയത ചരത്തിന്ടെ സംഭവ്യത വിതരണമാണെങ്കിൽ y കണ്ടുപിടിക്കുക.

x

1

2

3

4

5

P(x)

1/12

5/12

1/12

4/12

y

ഒരു പകിട കറക്കുമ്പോൾ ഇരട്ട അഭാജ്യ സംഖ്യ കിട്ടാനുള്ള സാധ്യത എന്തിനു ഉദാഹരണമാണ്?
മീൻ, മേടിക്കാൻ, മോഡ്, SD തുടങ്ങിയ സാംഖ്യക സ്ഥിര സംഖ്യകൾ സാമ്പിളിൽ നിന്നും കണക്കാക്കിയാൽ അവയെ ______എന്ന് വിളിക്കുന്നു.