App Logo

No.1 PSC Learning App

1M+ Downloads
The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is

A527\sqrt{\frac{52}{7}}

B527\frac{52}{7}

C6\sqrt{6}

D6

Answer:

527\sqrt{\frac{52}{7}}

Read Explanation:

Solution:

Given:

Given observation: 6, 5, 9, 13, 12, 8, 10

Concept used:

Standard deviation, σ=xi2n(xin)2\sigma = \sqrt {\frac{\sum x^2_i}{n}-{(\frac{\sum x_i}{n})}^2}

Calculation:

n = 7

xin=6+5+9+13+12+8+107=9\sum \frac{x_i}{n} = \frac {6 + 5 + 9 + 13 + 12 + 8 + 10}{7}=9

xi2n=62+52+92+132+122+82+1027=6197\frac{\sum x^2_i}{n} = \frac {6^2 + 5^2 + 9^2 + 13^2 + 12^2 + 8^2 + 10^2}{7}=\frac{619}{7}

Now, the standard deviation,

619794\sqrt{\frac{619}{7}-9^4}

=527=\sqrt{\frac{52}{7}}

∴ The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is  527\sqrt{\frac{52}{7}}


Related Questions:

Which of the following is a mathematical average?
ഒരു നാണയം 2 പ്രാവശ്യം എറിയുന്നു . ഏറ്റവും കുറഞ്ഞത് ഒരു ഹെഡ് കിട്ടാനുള്ള സാധ്യത?
ഒരു ഡാറ്റയിൽ ഏറ്റവും കൂടുതൽ ആവർത്തിക്കുന്ന വിലയാണ് ആ ഡാറ്റയുടെ
Find the median of the numbers 8, 2, 6, 5, 4 and 3
52 ചീട്ടുകളുള്ള ഒരു പാക്കറ്റിൽ നിന്നും ഓരോന്നായി 5 ചീട്ടുകൾ എടുക്കുന്നു. എടുക്കുന്ന ചീട്ട് തിരികെ വയ്ക്കുന്നു എന്ന് കരുതുക. എങ്കിൽ 3 ചീട്ടുകളി ഹൃദയ ചിഹ്നമുള്ള ചീട്ടുകൾ ആകാനുള്ള സംഭവ്യത കാണുക .