Challenger App

No.1 PSC Learning App

1M+ Downloads
The value of k for which kx+3y-k+3=0 and 12x+ky=k have infinitely many solutions is :

A1

B5

C-6

D6

Answer:

D. 6

Read Explanation:

kx+3y(k3)=0kx+3y-(k-3)=0

12x+kyk=012x+ky-k=0

a1a2=b1b2=c1c2\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}

k12=3k=k3k\frac{k}{12}=\frac{3}{k}=\frac{k-3}{k}

k12=3k\frac{k}{12}=\frac{3}{k}

k2=36k^2=36

k=±6k=±6

k23k=3kk^2-3k=3k

k26k=0k^2-6k=0

k(k6)=0k(k-6)=0

k=0k=0

k6=0k-6=0

k=6k=6


Related Questions:

If b² - 4ac < 0 then the roots of the quadratic equation are _____

If x479x2+1=0x^4-79x^2+1=0then the value of x+x1x+x^{-1} can be;

Find the root of the equation 3x226x+2=03x^2-2\sqrt6x+2=0.

x # y = xy + x + y ആയാൽ 5#4 - 1#2 എത്ര?

Which of the following is a factor of the expression 52n23n5^{2n}-2^{3n},where n is a natural number ?