The value of k for which kx+3y-k+3=0 and 12x+ky=k have infinitely many solutions is :A1B5C-6D6Answer: D. 6 Read Explanation: kx+3y−(k−3)=0kx+3y-(k-3)=0kx+3y−(k−3)=012x+ky−k=012x+ky-k=012x+ky−k=0a1a2=b1b2=c1c2\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}a2a1=b2b1=c2c1k12=3k=k−3k\frac{k}{12}=\frac{3}{k}=\frac{k-3}{k}12k=k3=kk−3k12=3k\frac{k}{12}=\frac{3}{k}12k=k3k2=36k^2=36k2=36k=±6k=±6k=±6k2−3k=3kk^2-3k=3kk2−3k=3kk2−6k=0k^2-6k=0k2−6k=0k(k−6)=0k(k-6)=0k(k−6)=0k=0k=0k=0k−6=0k-6=0k−6=0k=6k=6k=6 Read more in App