Challenger App

No.1 PSC Learning App

1M+ Downloads
The value of k for which kx+3y-k+3=0 and 12x+ky=k have infinitely many solutions is :

A1

B5

C-6

D6

Answer:

D. 6

Read Explanation:

kx+3y(k3)=0kx+3y-(k-3)=0

12x+kyk=012x+ky-k=0

a1a2=b1b2=c1c2\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}

k12=3k=k3k\frac{k}{12}=\frac{3}{k}=\frac{k-3}{k}

k12=3k\frac{k}{12}=\frac{3}{k}

k2=36k^2=36

k=±6k=±6

k23k=3kk^2-3k=3k

k26k=0k^2-6k=0

k(k6)=0k(k-6)=0

k=0k=0

k6=0k-6=0

k=6k=6


Related Questions:

The units digit of 720197^{2019} is

Solution of the linear inequalities 2x+5>1 and 3x-4≤5 is :

If a + b = 8 and a + a2 b + b + ab2 = 128 then the positive value of a3 + b3 is:

p @ q = p + q +p/q ; 8@2=?
രണ്ടു സംഖ്യകളുടെ തുക 6 അവയുടെ ഗുണനഫലം 8, എങ്കിൽ അവയുടെ വ്യുൽക്രമങ്ങളുടെ തുക എന്ത്