Challenger App

No.1 PSC Learning App

1M+ Downloads

The value of sin238° – cos252° is:

A√2

B1

C0

D1/√2

Answer:

C. 0

Read Explanation:

Solution:

Given:

sin238° – cos252° 

Concept Used:

sin2θ + cos2θ = 1

sin(90° – θ ) = cosθ 

Calculation:

sin238° – cos252° = sin238° – sin2(90° – 52°)

⇒ sin238° – sin238°

⇒ 0

⇒ sin238° – cos252° = 0

∴ sin238°  cos252° = 0


Related Questions:

Find the area of a parallelogram with sides B = 6, AC = 3, and ∠ BAC = 60.

1000114769.jpg
If Cos 3θ = Sin (θ - 34°), then the value of θ as an acute angle is:

What is the value of

tan30+cot30sec30+tan30×sin30\frac{tan30^\circ+cot30^\circ}{sec30^\circ+tan30^\circ}\times sin30^\circ

Convert 6 radian into degree measure.

The value of sin252+2+sin2384cos2435+4cos247\frac{{{{\sin }^2}{}52^\circ + 2 + {{\sin }^2}{{ }}38^\circ }}{{4{}{{\cos }^2}43^\circ - 5 + 4{{\cos }^2}{{}}47^\circ }}