Solution:
Given:
Two bottles A and B contain diluted acid.
In bottle A, the amount of water is double the amount of acid.
In bottle B, the amount of acid is 3 times that of water.
Resulted solution quantity = 5 liter and ratio of acid and water in solution is 1 : 1.
Formula used:
Individual share in ratio = (individual ratio/sum of ratio) × total quantity
Calculation:
Let the amount of diluted acid be taken from bottle A and B is X and Y respectively.
Ratio between Acid and Water in bottle A = 1 : 2
Ratio between Acid and Water in bottle B = 3 : 1
Acid quantity in resulted solution =3X+43Y
Water quantity in resulted solution =32X+4Y
According to question, acid quantity and water quantity is equal in resulted solution.
3X+43Y=32X+4Y
43Y−Y=32X−X
42Y=3X
YX=23
Quantity of resulted solution = 5 litres
∴ Mixture(in litres) should be taken from bottle A is 3 litres and from bottle B is 2 litres.
Alternate Method
Acid : Water in bottle A = 1 : 2
Acid in bottle A=31
Acid : Water in bottle B = 3 : 1
Acid in bottle B = ¾
Acid : water in required solution = 1 : 1
Acid in required solution = ½
By using allegation method
1/3 3/4
1/2
(43−21)=41 (21−31)=61
⇒ ratio=41:61
⇒ 3 : 2
Quantity of resulted solution = 5 litres
∴ Mixture(in litres) should be taken from bottle A is 3 litres and from bottle B is 2 litres.