Challenger App

No.1 PSC Learning App

1M+ Downloads

What is the Value of cos(50+A)sin(40A)cos40sec40\frac{\cos(50^\circ +A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

A0.5

B1

C2

D0

Answer:

D. 0

Read Explanation:

Solution:

Given:

cos(50+A)sin(40A)cos40sec40\frac{\cos(50^\circ +A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

Calculation:

cos(50+A)sin(40A)cos40sec40\frac{\cos(50^\circ +A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

sin(90(50+A))sin(40A)cos40sec40\frac{\sin(90 - (50^\circ +A))-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

sin(40A)sin(40A)cos40sec40\frac{\sin(40^\circ-A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

⇒ 0

∴ The required answer is 0.

$


Related Questions:

What is the value of sin2 45° + cos2 45° ?

A triangle is to be drawn with one side 6cm and an angle on it is 60 what should be the minimum length of the side opposite to this angle?

what is the ratio sides of the triangle

1000114738.jpg

If the angles of a triangle are in the ratio 30° , 75° and 75° then the sides are in the ratio

Find the value of sin235° + sin255°