App Logo

No.1 PSC Learning App

1M+ Downloads
When 10 girls left, the ratio of boys and girls became 2:1, and if afterwards 20 boys left, the ratio became 4:3. Find the sum of boys and girls?

A120

B180

C100

D150

Answer:

C. 100

Read Explanation:

Given:

The ratio of boys and girls when 10 girls left = 2 : 1

The ratio of boys and girls when 20 boys left = 4 : 3

Calculation:

Let there be x boys and y girls present

Then, x(y10)=21\frac{x}{(y - 10)}=\frac{2}{1}

⇒ x = 2y - 20     -----(1)

Now, (x20)(y10)=4:3\frac{(x - 20)}{(y - 10)}=4 : 3

⇒ 3x - 60 = 4y - 40

⇒ 3x = 4y - 40 + 60

⇒ 3x = 4y + 20     -----(2)

Put the value of x from equation(1) in equation(2)

⇒ 3(2y - 20) = 4y + 20

⇒ 6y - 60 = 4y + 20

⇒ 6y - 4y = 20 + 60

⇒ 2y = 80

⇒ y = 40

Now, x = 2y - 20

⇒ x = 2 × 40 - 20

⇒ x = 80 - 20 = 60

Now, The sum of boys and girls = 40 + 60 = 100

∴ The sum of boys and girls is 100.


Related Questions:

126 പെൺകുട്ടികൾ പഠിക്കുന്ന സ്കൂളിൽ പെൺകുട്ടികളുടെയും ആൺകുട്ടി കളുടെയും എണ്ണങ്ങൾ തമ്മിലുള്ള അംശബന്ധം 3: 5 ആണ്. ആൺകുട്ടികളുടെ എണ്ണം, പെൺകുട്ടികളുടെ എണ്ണത്തേക്കാൾ എത്ര കൂടുതലാണ് ?
If 2/3 of the weight of a brick is 5/6 kg, then 3/5 of the weight of the brick will be:
P:Q= 3:7, PQ= 84, P എത്ര?
15 : 75 =7 : x ആയാല്‍ ' x ' എത്ര ?
The ratio of income of A and B is 5 : 7. The ratio of expenditure of both is 3 : 4 and their savings are respectively Rs. 1400 and Rs. 2200. Find the income of A and B respectively.