Challenger App

No.1 PSC Learning App

1M+ Downloads

x=ya,y=zb,z=xcx=y^a,y=z^b,z=x^cആയാൽ abc=?$$

A1

B1/2

C1/xyz

D2

Answer:

A. 1

Read Explanation:

x=ya,y=zb,z=xcx=y^a,y=z^b,z=x^c

x=ya=(zb)ay=zbx=y^a=(z^b)^a\because{y=z^b}

=((xc)b)az=xc=((x^c)^b)^a\because{z=x^c}

=xabc(mn)p=mop=x^{abc}\because{(m^n)^p=m^{op}}

    abc=1x=xabc\implies{abc}=1\because{x=x^{abc}}


Related Questions:

5xm=55x^m=5ആയാൽ m ൻ്റേ വില കണ്ടെത്തുക.

3xy=813^{x-y}=81,3x+y=7293^{x+y}=729ആയാൽ x ൻ്റെ വില എന്ത് 

(52)2×(51)2(52)1×(51)1\frac{(5^2)^2\times(5^1)^2}{(5^2)^1\times(5^1)^1}ലഘൂകരിക്കുക

$(1/2)^3-(1/2)^2+1=?

(1)121×576=?(-1)^{121 }\times\sqrt{576}=?