App Logo

No.1 PSC Learning App

1M+ Downloads
y=x³logx ; d²y/dx²=

A5x+6xlogx

B5x-6xlogx

C5x

D6xlogx

Answer:

A. 5x+6xlogx

Read Explanation:

y=x³logx applying chain rule (uv)'=u'v+v'u dy/dx= x³ x 1/x + logx x 3x^2 = x² + 3x²logx d²y/dx²= 2x + 3x² x 1/x + logx x 6x = 2x + 3x + 6xlogx = 5x + 6xlogx


Related Questions:

$y=x^{20} ; \frac{d^2y}{dx^2}= ?

x=asin1t,y=acos.1tx=\sqrt{a^{sin^{-1}t}} , y=\sqrt{a^{cos^{-.1}t}}dy/dx=?

lim (x -> 1) (3x+2) എത്ര?

f(x,y)=xy2+3x+2y3+logxf(x,y) = xy^2+3x+2y^3+logx എങ്കിൽ fx=?f_x= ?

y=x²+3x+2 ; d²y/dx²=