App Logo

No.1 PSC Learning App

1M+ Downloads
If a sum of money doubles itself in 10 years at compound interest, then in how many years will it become 16 times of itself at the same rate?

A10

B20

C30

D40

Answer:

D. 40

Read Explanation:

a sum of money doubles itself in 10 years at compound interest.

In 10 years P becomes 2P

P(1+R100)10=2PP(1+\frac{R}{100})^{10}=2P

(1+R100)10=2(1+\frac{R}{100})^{10}=2 ---------------------(1)

In how many years it becomes 16 times of itself

P(1+R100)t=16PP(1+\frac{R}{100})^t=16P

(1+R100)t=16(1+\frac{R}{100})^t=16

(1+R100)t=24(1+\frac{R}{100})^t=2^4 ------------------------(2)

By Comparing (1) & (2).,

((1+R100)10)4=(1+R100)t((1+\frac{R}{100})^{10})^4=(1+\frac{R}{100})^t

t=40yearst=40 years


Related Questions:

പ്രതിവർഷം 6% നിരക്കിൽ 2 വർഷത്തേക്ക് 2,500 രൂപക്ക് സാധാരണ പലിശയും കൂട്ടുപലിശയും തമ്മിലുള്ള വ്യത്യാസം എന്ത് ?
A bank gives 12% per annum interest on an account. If the interest is compounded halfyearly, then _______ of the principal would have been earned more in a year as interest on the account.
8000 രൂപ 10% കൂട്ടുപലിശ നൽകുന്ന ബാങ്കിൽ നിക്ഷേപിക്കുന്നു. 2 വർഷം കഴിയുമ്പോൾ എത്ര രൂപ തിരികെ നൽകും?
20000 രൂപയ്ക്ക് 10% നിരക്കിൽ രണ്ടുവർഷത്തേക്കുള്ള കൂട്ടുപലിശ എത്ര?
The compound interest on a certain sum at a certain rate percent per annum for the second year and the third year are ₹ 3300 and ₹ 3630, respectively. The sum is: