App Logo

No.1 PSC Learning App

1M+ Downloads
ഒരു ബൈനോമിയൽ വിതരണത്തിന്റെ മാധ്യം 6 ഉം വ്യതിയാനം 5 ഉം ആണ്. p(x=1) കണക്കാക്കുക.

A65\frac{6}{5}

B56\frac{5}{6}

C534635\frac{5^{34}}{6^{35}}

D535634\frac{5^{35}}{6^{34}}

Answer:

535634\frac{5^{35}}{6^{34}}

Read Explanation:

മാധ്യം = 6

വ്യതിയാനം = 5

E(x)=np=6E(x)=np=6

V(x)=npq=5V(x)=npq=5

6×q=56 \times q = 5

q=56q=\frac{5}{6}

q=1pq=1-p

p=1q=156=16p=1-q=1-\frac{5}{6}=\frac{1}{6}

np=6np=6

n=6p=616=36n=\frac{6}{p}=\frac{6}{\frac{1}{6}}=36

P(X=x)=nCxpxqnxP(X=x) = ^nC_x p^xq^{n-x}

P(X=1)=36C1(16)1(56)35P(X=1) = ^36C_1 (\frac{1}{6})^1(\frac{5}{6})^{35}

=535634=\frac{5^{35}}{6^{34}}


Related Questions:

X , Y എന്നിവ രണ്ടു അനിയത ചരമാണെങ്കിൽ XY ഒരു
One card is drawn from a well shuffled deck of 52 cards. If each outcome is equally likely, calculate the probability that the card will be not an ace

Given data consists of distinct values of xi occurring with frequencies fi. The mean value for the data is

xi 5 6 8 10

fi 8 10 10 12

In a simultaneous throw of a pair of dice, find the probability of getting a total more than 7.
Example of positional average